DOI QR코드

DOI QR Code

A study on the denitrification and microbial community characteristics by the change of C/N ratio of molasses and nitrate nitrogen

당밀과 질산성 질소의 C/N ratio 변화에 따른 탈질 및 미생물 군집 특성에 관한 연구

  • Eom, Hanki (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sungchul (Department of Environmental Energy Engineering, Kyonggi University)
  • 엄한기 (경기대학교 환경에너지공학과) ;
  • 김성철 (경기대학교 환경에너지공학과)
  • Received : 2018.03.23
  • Accepted : 2018.04.23
  • Published : 2018.06.30

Abstract

To compare the denitrification efficiency, this study used molasses and methanol were used as external carbon sources. Specific experimental conditions were classified according to C/N ratio conditions. The batch test showed that the denitrification efficiency increased as C/N ratios of molasses and methanol rose. The most suitable C/N ratio of molasses turned out 4:1 considering the concentration of the residue chemical oxygen demand (COD) and the denitrification efficiency, which was 91.4%. Specific denitrification rate (SDNR) drawn as a kinetic factor demonstrated that molasses and methanol showed similar SDNR values as C/N ratios of molasses and methanol increased. Under the condition of C/N ratio 4:1, 0.0292 g $NO_3{^-}-N$ removal/g mixed liquor volatile suspended solid (MLVSS)/day (molasses), 0.0299 g $NO_3{^-}-N$ removal/g MLVSS/day (methanol) were found. Sludge adapted to molasses showed that Bacterium Pseudomonas sp. and Bergeylla sp. dominated through an analysis of microbial community. In addition, some bacteria were high convergences than the variety of microbial community. Accordingly, it was assumed that molasses focus on growing microorganisms specialized in denitrification and applied as a replaceable external carbon source that can enhance denitrification performance.

본 연구에서 탈질 효율 비교를 위해 당밀과 메탄올을 외부 탄소원으로 사용하였다. 세부 실험조건은 C/N ratio 조건에 따라 구분하였다. 회분식 실험 결과, 당밀과 메탄올 모두 C/N ratio가 증가할수록 탈질 효율은 증가하였다. 당밀의 최적 C/N ratio는 잔류 COD 농도와 탈질 효율을 고려할 때 4:1로 나타났으며, 이때 탈질 효율은 91.4%이다. 동역학적 인자로 SDNR을 도출한 결과, C/N ratio가 증가할수록 당밀과 메탄올은 유사한 SDNR 값을 보였으며, C/N ratio 4:1 조건에서 0.0292 g $NO_3{^-}-N$ removal/g MLVSS/day (molasse), 0.0299 g $NO_3{^-}-N$ removal/g MLVSS/day (mehtanol)로 나타났다. 미생물 군집 분석을 통해 당밀에 적응된 슬러지에는 Pseudomonas sp.와 Bergeylla sp. 박테리아가 우점화 된 것을 확인할 수 있었다. 또한 미생물 군집의 다양성보다는 일부 박테리아에 대한 집중성이 더 높게 나타났다. 이에 따라 당밀은 탈질에 특화된 미생물을 집중적으로 성장시키며, 탈질 성능을 높일 수 있는 대체 외부탄소원으로 적용이 가능할 것으로 판단된다.

Keywords

References

  1. Akunna, J.C., Bizeau, C., and Moletta, R. 1993. Nitrate and nitrite reduction with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Res. 27, 1303-1312. https://doi.org/10.1016/0043-1354(93)90217-6
  2. Cai, T., Qian, L., Cai, S., and Chen, L. 2011. Biodegradation of benazolin-ethyl by strain Methyloversatilis sp. cd-1 isolated from activated sludge. Curr. Microbiol. 62, 570-577. https://doi.org/10.1007/s00284-010-9746-7
  3. Choi, J.S., Kim, J.T., and Joo, H.J. 2014. Effect of total dissolved solids injection on microbial diversity and activity determined by 16S rRNA gene based pyrosequencing and oxygen uptake rate analysis. Environ. Eng. Sci. 31, 474-480. https://doi.org/10.1089/ees.2014.0043
  4. Cunningham, A.B., Sharp, R.R., Hiebert, R.H., and James, G. 2003. Subsurface biofilm barriers for the containment and remediation of contaminated groundwater. Bioremed. J. 7, 151-164. https://doi.org/10.1080/713607982
  5. Dutta, L., Nuttall, H.E., Cunningham, A., James, G., and Hiebert, R. 2005. In situ biofilm barriers: case study of a nitrate groundwater plume, Albuquerque, New Mexico. Remediat. J. 15, 101-111. https://doi.org/10.1002/rem.20063
  6. Eom, H.K., Choi, Y.H., and Joo, H.J. 2016. TDS removal using bio-sorption with AGS and high concentration nitrogen removal. J. Kor. Soc. Water Environ. 32, 303-309. https://doi.org/10.15681/KSWE.2016.32.3.303
  7. Grabinska-Loniewska, A. 1991. Biocenosis diversity and denitrification efficiency. Water Res. 25, 1575-1582. https://doi.org/10.1016/0043-1354(91)90190-2
  8. Henze, M. 1986. Nitrate versus oxygen utilization rates in wastewater and activated sludge systems. Water Sci. Technol. 18, 115-122.
  9. Henze, M. 1989. The influence of raw wastewater biomass on activated sludge oxygen respiration rates and denitrification rates. Water Sci. Technol. 21, 603-607. https://doi.org/10.2166/wst.1989.0262
  10. Henze, M. 1991. Capabilities of biological nitrogen removal processes from wastewater. Water Sci. Technol. 23, 669-679. https://doi.org/10.2166/wst.1991.0517
  11. Henze, M. and Harremoes, P. 1990. Chemical-biological nutrient removal-the HYPRO concept. Proceeding of the 4th, pp. 499-510. Gothenburg Symposium Chemical water and wastewater treatment, Madrid, Spain.
  12. Her, J.J. and Huang, J.S. 1995. Influences of carbon source and C/N ration on nitrate/nitrite denitrification and carbon breakthrough. Bioresour. Technol. 54, 45-51. https://doi.org/10.1016/0960-8524(95)00113-1
  13. Hiraishi, A., Muramatsu, K., and Urata, K. 1995. Characterization of new denitrifying Rhodobacter strains isolated from photosynthetic sludge for wastewater treatment. J. Ferment. Bioeng. 79, 39-44. https://doi.org/10.1016/0922-338X(95)92741-T
  14. Isaacs, S.H., Henze, H., Soeberg, H., and Kummel, M. 1994. External carbon source addition as a means to control an activated sludge nutrient removal process. Water Res. 28, 511-520. https://doi.org/10.1016/0043-1354(94)90002-7
  15. Jung, I.C., Jo, H.G., Lee, D.H., and Kang, D.H. 2005. Development and fuel scale application of the alternative carbon source based on the substrate compatibility. J. Kor. Soc. Environ. Engineer. 27, 491-498.
  16. Kaplan, D.L., Riley, P.A., Pierce, J., and Kaplan, A.M. 1987. Denitrification of high nitrate loads-efficiencies of alternative carbon sources. Int. Biodeterior. 23, 233-248. https://doi.org/10.1016/0265-3036(87)90003-0
  17. Kim, J.S., Kim, K.R., Kang, H.S., Won, I.S., Kim, K.Y., and Lee, S.I. 2012. Nitrogen removal characteristics in dynaflow biofilter system using sewage wastewater of low C/N ratio. J. Korean Soc. Environ. Eng. 34, 189-194. https://doi.org/10.4491/KSEE.2012.34.3.189
  18. Kujawa, K. and Klapwijk, B. 1999. A method to estimate denitrification potential for predenitrification system using NUR batch test. Water Res. 33, 2291-2300. https://doi.org/10.1016/S0043-1354(98)00459-X
  19. Lee, B.S., Lee, K.Y., Shin, D.Y., Choi, J.H., Kim, Y.J., and Nam, K.P. 2010. Denitrification by a heterotrophic denitrifier with an aid of slowly released molasses. J. Soil Groundwater Environ. 15, 30-38.
  20. Lee, K.Y., Lee, B.S., Shin, D.Y., Choi, Y.J., and Nam, K.P. 2013. Enhancement of denitrification capacity of Pseudomonas sp. KY1 through the optimization of C/N ratio of liquid molasses and nitrate. J. Korean Soc. Environ. Eng. 35, 654-659. https://doi.org/10.4491/KSEE.2013.35.9.654
  21. Lee, N.A. and Welander, T. 1996. The effect of different carbon sources on respiratory denitrification in biological wastewater treatment. J. Ferment. Bioeng. 82, 277-285. https://doi.org/10.1016/0922-338X(96)88820-9
  22. Li, W., Fu, L., Niu, B., Wu, S., and Wooley, J. 2012. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656-668. https://doi.org/10.1093/bib/bbs035
  23. Michalski, W.P. and Nicholas, D.J.D. 1988. Identification of two new denitrifying strains of Rhodobacter sphaeroides. FEMS Microbiol. Lett. 52, 239-243. https://doi.org/10.1111/j.1574-6968.1988.tb02603.x
  24. Monteith, H.D., Bridle, T.R., and Sutton, P.M. 1980. Industrial waste carbon sources for biological denitrification. Progress Water Technol. 12, 127-141.
  25. Sasaki, K., Ohtsuki, K., Emoto, Y., and Hamaoka, T. 1990. Treatment by a photosynthetic bacterium on the effluent from anaerobic digestor of swine wastewater. J. Soc. Agric. Struct. 20, 43-50.
  26. Shin, H.S., Chae, S.R., Nam, S.Y., Kang, S.T., and Paik, B.C. 2002. The effect of anaerobically fermented leachate of food waste on nutrient removal in BNR (1). J. Korean Soc. Environ. Eng. 24, 1023-1031.
  27. Skrinde, J.R. and Bhagat, S.K. 1982. Industrial wastes as carbon sources in biological denitrification. J. Water Pollut. Control Fed. 54, 370-377.
  28. Su, C. and Puls, R.W. 2007. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: implications for groundwater nitrate remediation using permeable reactive barriers. Chemosphere 67, 1653-1662. https://doi.org/10.1016/j.chemosphere.2006.09.059
  29. Takeno, K., Sasaki, K., Watanabe, M., Kaneyasu, T., and Nishio, N. 1999. Removal of phosphorus from oyster farm mud sediment using a photosynthetic bacterium, Rhodobacter sphaeroides IL106. J. Biosci. Bioeng. 88, 410-415. https://doi.org/10.1016/S1389-1723(99)80218-7
  30. Weier, K.L., Doran, J.W., Power, J.F., and Walters, D.T. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 57, 66-72. https://doi.org/10.2136/sssaj1993.03615995005700010013x
  31. Wiesmann, U. 1994. Biological nitrogen removal from wastewater, pp. 113-154. In Fiechter, A. (ed.), Advances in Biochemical Engineering Biotechnology, Springer Verlag, Berlin, Heideberg, Germany.
  32. Yoon, S.J., Kang, W.C., Bae, W.K., and Oh, S.E. 2010. Autotrophic nitrite denitrification using sulfur particles for treatment of wastewaters with low C/N ratios (Batch Tests). J. Korean Soc. Environ. Eng. 32, 851-856.