DOI QR코드

DOI QR Code

Interfacial Microstructure and Shear Strength of Reactive Air Brazed Oxygen Transport Membrane Ceramic-Metal Alloy Joints

  • Muhamad FR, Wahid (School of Materials Science and Engineering, Yeungnam University) ;
  • Yoon, Dang-Hyok (School of Materials Science and Engineering, Yeungnam University) ;
  • Raju, Kati (School of Materials Science and Engineering, Yeungnam University) ;
  • Kim, Seyoung (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research) ;
  • Song, Kwang-sup (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research) ;
  • Yu, Ji Haeng (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research)
  • Received : 2017.03.04
  • Accepted : 2017.06.24
  • Published : 2018.01.31

Abstract

To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}-La_{0.7}Sr_{0.3}MnO_{3{\pm}{\delta}}$ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at $1050^{\circ}C$ for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged ($800^{\circ}C$ for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Research (KIER)

References

  1. J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, J. C. Diniz da Costa, et al. J. Membrane Sci. 320, 13 (2008). https://doi.org/10.1016/j.memsci.2008.03.074
  2. S. Baumann, J. M. Serra, M. P. Lobera, S. Escolastico, F. Schulze-Kuppers, and W. A. Meulenberg, J. Membrane Sci. 377, 198 (2011). https://doi.org/10.1016/j.memsci.2011.04.050
  3. S. Baumann, W. A. Meulenberg, and H. P. Buchkremer, J. Eur. Ceram. Soc. 33, 1251 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.12.005
  4. M. Katsuki, S. Wang, M. Dokiya, and T. Hashimoto, Solid State Ionics 156, 453 (2003). https://doi.org/10.1016/S0167-2738(02)00733-6
  5. H. Wang, R. Wang, D. T. Liang, and W. Yang, J. Membrane Sci. 243, 405 (2004). https://doi.org/10.1016/j.memsci.2004.07.003
  6. Y. Zou, W. Zhou, S. Liu, and Z. Shao, J. Eur. Ceram. Soc. 31, 2931 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.07.028
  7. F. Schulze-Kuppers, S. Baumann, W. A. Meulenberg, D. Stover, and H. P. Buchkremer, J. Membrane Sci. 433, 121 (2013). https://doi.org/10.1016/j.memsci.2013.01.028
  8. K. Zhang, J. Sunarso, Z. Shao, W. Zhou, C. Sun, S. Liu, et al. RSC Adv. 1, 1661 (2011). https://doi.org/10.1039/c1ra00419k
  9. J. H. Joo, K. S. Yun, Y. Lee, J. Jung, C.-Y. Yoo, and J. H. Yu, ACS Appl. Mater. Inter. 7, 14699 (2015). https://doi.org/10.1021/acsami.5b03392
  10. R. W. Messler, Joining of Advanced Materials, pp.509-538, Butterworth-Heinemann, New York, USA (1994).
  11. M. G. Nicholas, Joining of Ceramics, pp.128-154, Chapman and Hall, Lincoln, USA (1990).
  12. K. Raju, Muksin, S. Kim, K. Song, J. H. Yu, and D.-H. Yoon, Mater. Design 109, 233 (2016). https://doi.org/10.1016/j.matdes.2016.07.068
  13. J. Y. Kim, J.-P. Choi, and K. S. Weil, Int. J. Hydrogen Energ. 33, 3952 (2008). https://doi.org/10.1016/j.ijhydene.2007.12.043
  14. K. S. Weil, J. Y. Kim, and J. S. Hardy, Electrochem. Solid St. 8, A133 (2005). https://doi.org/10.1149/1.1850391
  15. Y. Zhao, J. Malzbender, and S. M. Gross, J. Eur. Ceram. Soc. 31, 541 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.10.032
  16. J. Y. Kim, J. S. Hardy, and K. S. Weil, Int. J. Hydrogen Energ. 32, 3655 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.054
  17. O. M. Akselsen, J. Mater. Sci. 27, 1989 (1992). https://doi.org/10.1007/BF01117909
  18. O. M. Akselsen, J. Mater. Sci. 27, 569 (1992). https://doi.org/10.1007/BF02403862
  19. M. S. Reichle, T. Koppitz, and U. Reisgen, Weld. J. 89, 57 (2010).
  20. J. Y. Kim, J. S. Hardy, and K. S. Weil, J. Am. Ceram. Soc. 88, 2521 (2005). https://doi.org/10.1111/j.1551-2916.2005.00492.x
  21. K. Raju, Muksin, and D.-H. Yoon, Ceram. Int. 42, 16392 (2016). https://doi.org/10.1016/j.ceramint.2016.07.042
  22. J. S. Hardy, J. Y. Kim, and K. S. Weil, J. Electrochem. Soc. 151, J43 (2004). https://doi.org/10.1149/1.1764782
  23. V. V. Joshi, A. Meier, J. Darsell, K. S. Weil, and M. Bowden, J. Mater. Sci. 48, 7153 (2013). https://doi.org/10.1007/s10853-013-7531-2
  24. H. Chen, L. Li, R. Kemps, B. Michielsen, M. Jacobs, V. Middelkoop, et al. Acta Mater. 88, 74 (2015). https://doi.org/10.1016/j.actamat.2015.01.029
  25. K. M. Erskine, A. M. Meier, and S. M. Pilgrim, J. Mater. Sci. 37, 1705 (2002). https://doi.org/10.1023/A:1014912923977
  26. W. Z. Zhu and S. C. Deevi, Mat. Sci. Eng. A 348, 227 (2003). https://doi.org/10.1016/S0921-5093(02)00736-0
  27. Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, J. Electrochem. Soc. 150, A1188 (2003). https://doi.org/10.1149/1.1595659
  28. A. M. Meier, P. Chidambaram, and G. R. Edwards, J. Mater. Sci. 30, 4781 (1995). https://doi.org/10.1007/BF01154485
  29. S. Kim, J. H. Joo, S.-D. Kim, and S.-K. Woo, Ceram. Int. 39, 9223 (2013). https://doi.org/10.1016/j.ceramint.2013.05.027
  30. J. T. Darsell and K. S. Weil, J. Phase Equilib. Diff. 27, 92 (2006). https://doi.org/10.1361/105497106X92862
  31. Z. B. Shao, K. R. Liu, L. Q. Liu, H. K. Liu, and S. X. Dou, J. Am. Ceram. Soc. 76, 2663 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03996.x
  32. J. Y. Kim, J. S. Hardy, and K. S. Weil, J. Mater. Res. 20, 636 (2005). https://doi.org/10.1557/JMR.2005.0088
  33. J. Y. Kim and K. S. Weil, J. Am. Ceram. Soc. 90, 3830 (2007).
  34. J. W. Fergus, Mat. Sci. Eng. A 397, 271 (2005). https://doi.org/10.1016/j.msea.2005.02.047
  35. K. Przybylski, T. Brylewski, E. Durda, R. Gawel, and A. Kruk, J. Therm. Anal. Calorim. 116, 825 (2014). https://doi.org/10.1007/s10973-013-3594-1
  36. S. Molin, M. Chen, and P. V. Hendriksen, J. Power Sources 251, 488 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.100
  37. N. J. Magdefrau, L. Chen, E. Y. Sun, and M. Aindow, J. Power Sources 241, 756 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.181
  38. R. Sachitanand, M. Sattari, J.-E. Svensson, and J. Froitzheim, Int. J. Hydrogen Energ. 38, 15328 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.044
  39. R. Kiebach, K. Engelbrecht, L. Grahl-Madsen, B. Sieborg, M. Chen, J. Hjelm, et al. J. Power Sources 315, 339 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.030
  40. A. Ponicke, J. Schilm, M. Kusnezoff, and A. Michaelis, Fuel Cells 15, 735 (2015). https://doi.org/10.1002/fuce.201400192
  41. J. Xiao, N. Prudhomme, N. Li, and V. Ji, Appl. Surf. Sci. 284, 446 (2013). https://doi.org/10.1016/j.apsusc.2013.07.117
  42. N. C. Alstrup, N. Langvad, and I. Chorkendorff, Surf. Interface Anal. 22, 441 (1994). https://doi.org/10.1002/sia.740220194
  43. A. Laik, P. Mishra, K. Bhanumurthy, G. B. Kale, and B. P. Kashyap, Acta Mater. 61, 126 (2013). https://doi.org/10.1016/j.actamat.2012.09.040
  44. S. K. Sharma, G. D. Ko, and K. J. Kang, J. Eur. Ceram. Soc. 29, 355 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.05.051
  45. C. Cionea, M. D. Abad, Y. Aussat, and D. Frazer, Sol. Energ. Mat. Sol. C. 144, 235 (2016). https://doi.org/10.1016/j.solmat.2015.09.007
  46. H. T. Zheng, Adv. Mat. Res. 941, 212 (2014).
  47. S. Shibagaki, A. Koga, and Y. Shirakawa, Thin Solid Films 303, 101 (1997). https://doi.org/10.1016/S0040-6090(97)00130-2
  48. M. Singh, T. P. Shpargel, and R. Asthana, Int. J. Appl. Ceram. Tech. 4, 119 (2007). https://doi.org/10.1111/j.1744-7402.2007.02126.x
  49. D. Liu, H. W. Niu, Y. H. Zhou, X. G. Song, D. Y. Tang, and J. C. Feng, Mater. Design 87, 42 (2015). https://doi.org/10.1016/j.matdes.2015.08.005
  50. X. Dai, J. Cao, J. Liu, D. Wang, and J. Feng, Mat. Sci. Eng. A 646, 182 (2015). https://doi.org/10.1016/j.msea.2015.08.067

Cited by

  1. Efficacy of Ag-CuO Filler Tape for the Reactive Air Brazing of Ceramic-Metal Joints vol.55, pp.5, 2018, https://doi.org/10.4191/kcers.2018.55.5.05
  2. Characterization of self-assembled silver nanoparticle ink based on nanoemulsion method vol.7, pp.5, 2018, https://doi.org/10.1098/rsos.200296
  3. Interfacial and Cross-sectional Studies of Thermally Cycled Alumina-Monel Brazed Joint vol.79, pp.3, 2018, https://doi.org/10.1080/0371750x.2020.1787865
  4. A novel Ag-CuAlO2 sealant for reactive air brazing of 3YSZ and AISI 310S vol.47, pp.22, 2021, https://doi.org/10.1016/j.ceramint.2021.08.017