DOI QR코드

DOI QR Code

Tempering Behavior of TiC-Reinforced SKD11 Steel Matrix Composite

  • Received : 2017.08.28
  • Accepted : 2017.11.05
  • Published : 2018.05.31

Abstract

TiC-reinforced SKD11 steel matrix composite, fabricated by a pressure infiltration casting, undergoes monotonic decrease in hardness as tempering temperature increases. Element mappings by TEM-EDS and thermodynamic calculation indicate that remarkable redistribution of V between the reinforcement and the steel matrix occurs by partial dissolution and reprecipitation of MC carbides upon casting process. The absence of secondary hardening is led by the enrichment of V in the reinforcement that reduces the V content in the steel matrix; this reduction in V content makes the precipitation of fine VC sluggish during the tempering.

Keywords

Acknowledgement

Supported by : Agency for Defense Development (ADD)

References

  1. K.U. Kainer, Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering (Wiley, Weinheim, 2006), pp. 1-4
  2. K.I. Parashivamurthy, R.K. Kumar, S. Seetharamu, M.N. Chandrasekharaiah, J. Mater. Sci. 36, 4519 (2001) https://doi.org/10.1023/A:1017947206490
  3. F. Akhtar, Can. Metall. Q. 53, 253 (2014) https://doi.org/10.1179/1879139514Y.0000000135
  4. H. Ye, X.Y. Liu, H. Hong, J. Mater. Process. Technol. 200, 12 (2008) https://doi.org/10.1016/j.jmatprotec.2007.10.066
  5. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, J. Mater. Sci. 26, 1137 (1991) https://doi.org/10.1007/BF00544448
  6. S.C. Tjong, Z.Y. Ma, Mater. Sci. Eng. R 29, 49 (2000) https://doi.org/10.1016/S0927-796X(00)00024-3
  7. J.-W. Kim, J.-M. Lee, J.-H. Lee, J.-C. Lee, Met. Mater. Int. 20, 1151 (2014) https://doi.org/10.1007/s12540-014-6020-8
  8. J. Zhang, J.-M. Lee, Y.-H. Cho, S.-H. Kim, H. Yu, Met. Mater. Int. 22, 324 (2016) https://doi.org/10.1007/s12540-016-5452-8
  9. I.-J. Shon, S.-M. Kwon, N.-R. Park, J.-W. Shin, S.-H. Oh, B.-S. Kim, Korean J. Met. Mater. 53, 555 (2015) https://doi.org/10.3365/KJMM.2015.53.8.555
  10. E. Pagounis, V.K. Lindroos, Mater. Sci. Eng. A 246, 221 (1998) https://doi.org/10.1016/S0921-5093(97)00710-7
  11. M. Kivio, L. Holappa, T. Yoshikawa, T. Tanaka, High Temp. Mater. Proc. 31, 645 (2012)
  12. M. Turker, C. Karatas, Powder Metall. 47, 49 (2004) https://doi.org/10.1179/003258904225015419
  13. N.H. Loh, S.B. Tor, K.A. Khor, J. Mater. Process. Technol. 108, 398 (2001) https://doi.org/10.1016/S0924-0136(00)00855-4
  14. M. Khakbiz, A. Simchi, R. Bagheri, Mater. Sci. Eng. A 407, 105 (2005) https://doi.org/10.1016/j.msea.2005.06.057
  15. T.Z. Kattamis, T. Suganuma, Mater. Sci. Eng. A 128, 241 (1990) https://doi.org/10.1016/0921-5093(90)90232-R
  16. B.S. Terry, O.S. Chinyamakobvu, J. Mater. Sci. Lett. 10, 628 (1991) https://doi.org/10.1007/BF00723359
  17. J.V. Wood, K. Dinsdale, P. Davies, J.L.F. Kellie, Mater. Sci. Technol. 11, 1315 (1995) https://doi.org/10.1179/mst.1995.11.12.1315
  18. S.H. Kim, D.H. Kim, K.-C. Hwang, S.-B. Lee, S.-K. Lee, H.U. Hong, D.-W. Suh, Met. Mater. Int. 22, 935 (2016) https://doi.org/10.1007/s12540-016-6176-5
  19. N.R. Oh, S.K. Lee, K.C. Hwang, H.U. Hong, Scripta Mater. 112, 123 (2016) https://doi.org/10.1016/j.scriptamat.2015.09.028
  20. S. Cho, I. Jo, H. Kim, H.T. Kwon, S.K. Lee, S.B. Lee, Appl. Surf. Sci. 415, 155 (2017) https://doi.org/10.1016/j.apsusc.2016.11.164
  21. T.S. Srivatsan, R. Annigeri, A. Prakash, Compos. Part A Appl. Sci. 28, 377 (1997) https://doi.org/10.1016/S1359-835X(96)00137-6
  22. R.K. Galgali, H.S. Ray, A.K. Chakrabarti, Mater. Sci. Technol. 15, 437 (1999) https://doi.org/10.1179/026708399101505905
  23. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Calphad 26, 273 (2002) https://doi.org/10.1016/S0364-5916(02)00037-8
  24. F. Akhtar, S. Guo, J.A. Shah, P. Feng, Mater. Sci. Forum 534, 1161 (2007)
  25. G.A. Roberts, G. Krauss, R. Kennedy, Tool Steels, 5th edn. (ASM International, Ohio, 1998), pp. 205-212
  26. J.F. Shackelford, Y.-H. Han, S. Kim, S.-H. Kwon, CRC Materials Science and Engineering Handbook , 4th edn. (CRC Press, Boca Raton, 2015), p. 364
  27. H.S. Kim, Mater. Sci. Eng. A 289, 30 (2000) https://doi.org/10.1016/S0921-5093(00)00909-6
  28. G.A. Roberts, G. Krauss, R. Kennedy, Tool Steels , 5th edn. (ASM International, Ohio, 1998), pp. 99-104

Cited by

  1. Investigation of the strengthening mechanism and corrosion behaviours of Vanadis 4 extra tool steel adding ZrC−TiC powders through vacuum sintering, and sub-zero and heat treatments vol.63, pp.2, 2018, https://doi.org/10.1080/00325899.2020.1758885
  2. Hardness and Transverse Rupture Strength of TiC-Reinforced SKD11 Steel Matrix Composite vol.26, pp.3, 2020, https://doi.org/10.1007/s12540-019-00341-z
  3. Microstructure and properties of (Ti, Cr) C reinforced novel medium manganese steel vol.11, pp.3, 2021, https://doi.org/10.1063/5.0041966