DOI QR코드

DOI QR Code

Effect of Additives on the Sand Burning of Inorganic Binder in Al-Si7Mg Alloy Casting

물유리계 바인더의 첨가제가 Al-Si7Mg 합금 주조 시 소착에 미치는 영향

  • Bae, Min A (Green Materials & Processes Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Myung Hwan (Green Materials & Processes Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Park, Jeong-Wook (R&D Center, DR AXION Co. Ltd.) ;
  • Lee, Man Sig (Green Materials & Processes Group, Korea Institute of Industrial Technology (KITECH))
  • 배민아 (한국생산기술연구원 친환경재료공정그룹) ;
  • 김명환 (한국생산기술연구원 친환경재료공정그룹) ;
  • 박정욱 ((주)디알액시온 기술연구소) ;
  • 이만식 (한국생산기술연구원 친환경재료공정그룹)
  • Received : 2017.07.27
  • Accepted : 2018.01.16
  • Published : 2018.04.30

Abstract

Traditional organic binders used by the foundry industry produce problems such as generation of volatile organic compounds(VOCs), smoke and etc. A water glass binder system has been developed to improve the casting strength and to solve the environmental problems. However the water glass binder has a serious problem of sand burning. In this study, a commercial water glass binder was modified to reduce sand burning during aluminium casting by the addition of Calcium carbonate, activated carbon, and monosaccharide. The modified water glass binder was characterized by XRF, viscometer and TGA-DTA. We then evaluated the water glass binder core strength. Casting tests were conducted using Al-Si7Mg alloy to compare the ability to prevent sand burning in a sand mold. The XRF results of the prepared modified water glass binder showed a similar molar ratio of $SiO_2/Na_2O$ to the commercial one. From the TGA-DTA analysis and gas emission calculation, it was considered that gas generation and corresponding inhibition of sand burning would be maximized with the monosaccharide-added water glass binder. Casting evaluation showed reduced sand burning for the water glass binder with mono saccharide. Also, core strength was found to be similar to the commercial water glass binder. These results prove that the monosaccharide-added water glass binder could replace the traditional organic binder.

Keywords

Acknowledgement

Supported by : 산업기술평가관리원, 한국생산기술연구원

References

  1. S. S. Shin, W.-C. Kim, E.-S. Kim, K.-M. Lim, and J. W. Park, J. KFS 33, 147 (2013).
  2. G. W. Kim, Thesis of master, Keimyung University, Korea (2012).
  3. A Schrey, Foseco Foundry Practice, 246, Staffordshire (2007).
  4. N. Hodgkinson, Improved ductile iron casting quality through optimized coating technology, http://www.ductile.org/magazine/2004_1/coating (2004).
  5. R. Rajkolhe and J. G. Khan, Int. J. Res. Advent Technol. 2, 375 (2014).
  6. J. Danko, J. Kaminska, and M. Skrzynski, Arch. Metall. Mater. 58, 993 (2013). https://doi.org/10.2478/amm-2013-0117
  7. Y. S. Han, Strength development characteristics of inorganic groud injection material(NDS), 10, Hanyang University, Seoul (2012).
  8. Hartmut polzin, Inorganic Binders for mould and core production in the foundry, 18, Schiele Schon, Germary (2012).
  9. S. D. Wang, K. L. Scrivener, and P. L. Pratt, Cem. Concr. Res. 24, 1033 (1994). https://doi.org/10.1016/0008-8846(94)90026-4
  10. E. Acevedo-Martinez, L. Y. Gomez-Zamorano, and J. I. Escalante-Garcia, Constr. Build. Mater. 37, 462 (2012). https://doi.org/10.1016/j.conbuildmat.2012.07.041
  11. Robert G, Avoid Outdated Methods for Predicting Powder Flow, https://www.rdmag.com/article/2015/06/avoid-outdatedmethods-predicting-powder-flow (2011).
  12. Y. Jeong and E. H. Kim, Korean Patent 101273361 (2013).
  13. T. C. Eisele, S. K. Kawatra, and A. Nofal, Min. Proc. Ext. Met. Rev. 25, 269 (2004). https://doi.org/10.1080/08827500390256816
  14. X. Zhou, J. Yang, and G. Qu, J. Mater. Process. Tech. 183, 407 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.001
  15. L. Wia, Y. S. Zhang, and J. Huang, Adv. Mater. Res. 97, 979 (2010).
  16. J. T. Fox, F. S. Cannon, N. R. Brown, H. Huang, and J. C. Furness, Int. J. Adhes. Adhes. 34, 38 (2012). https://doi.org/10.1016/j.ijadhadh.2011.11.011
  17. Y.-P. Kong, S.-H. Seo, J.-H. Kim, and D.-S. Suhy, J. Korean Ceram. Soc. 42, 691 (2005). https://doi.org/10.4191/KCERS.2005.42.10.691
  18. W. K Lee and A. R Oh, J. Korea Soc. Waste Manag. 29, 155 (2012).
  19. S. M. Kawon, E. D. Jin, and N. H. Kim, Forest Bioenergy 10, 25 (2006).
  20. K. Y. Kim, J. KFS 32, 190 (2012).
  21. C. J. Tijsen, R. M. Voncken, and A. A. C. M. Beenackers, Chem. Eng. Sci. 56, 411 (2001). https://doi.org/10.1016/S0009-2509(00)00243-8
  22. X. Zang, X. Liu, and W. Li, J. Appl. Polym. Sci. 89, 3016 (2003). https://doi.org/10.1002/app.12438
  23. X. Tian, G. Hong, Y. Liu, B. Jiang, and Y. Yang, RSC Adv. 4, 36316 (2014). https://doi.org/10.1039/C4RA06068G
  24. S. Abdolmohammadi, S. Siyamak, N. A. Ibrahim, W. M. Z. W. Yunus , M. Z. A. Rahman, S. Azizi, and A. Fatehi, Int. J. Mol. Sci. 13, 4508 (2012). https://doi.org/10.3390/ijms13044508
  25. S. K. Kim, K. D. Lee, Y. S Kim, and C. S. Shin, The Korean Society of Safety 13, 35 (2003).
  26. J. H. Shin, Y. M. Jeong, K. Y. John, and W. W. Park, Korean J. Met. Mater. 55, 645 (2017).
  27. J. W. Park, M. A. Bae, S. H. Ha, and M. S. Lee, The 16th International Symposium on Eco-Materials Processing and Design 1, 189 (2015).
  28. S. H. Ha, M. A. Bae, M. H. Kim, and M. S. Lee, The 16th International Symposium on Eco-Materials Processing and Design 1, 165 (2015).