DOI QR코드

DOI QR Code

Use of Hybrid Bead, Tannin and Chitosan, for Treatment of Pb(II) from Aqueous Solution

타닌과 키토산 하이브리드 비드를 이용한 수용액의 Pb(II) 제거

  • Yu, Sungwhan (Department of Health and Environment, Catholic Kwandong University) ;
  • Choi, Hee-Jeong (Department of Health and Environment, Catholic Kwandong University)
  • 유성환 (가톨릭 관동대학교 보건환경학과) ;
  • 최희정 (가톨릭 관동대학교 보건환경학과)
  • Received : 2018.03.09
  • Accepted : 2018.04.08
  • Published : 2018.04.30

Abstract

In this study, hybrid beads were prepared using tannin and chitosan. Batch experiments were carried out to remove Pb(II) from aqueous solution using hybrid bead. According to the FT-IR analysis, the hybrid beads had carboxylic, carbonyl groups, carboxylic acids, and bonded-OH groups, which made it very easy to adsorb heavy metals. The adsorption of Pb(II) using hybrid beads was suitable for pseudo-second-order and Langmuir isotherms. The maximum adsorption capacity of Langmuir was 123.19 mg/g of Pb(II). The adsorption strength of Pb(II) to the hybrid bead was high and showed the isothermal adsorption characteristics of L type. In the thermodynamic experiment, ${\Delta}G^o$ shows a negative value, and ${\Delta}H^o$ and ${\Delta}S^o$ show a positive value. It can be seen that the adsorption process of Pb(II) using hybrid bead is a spontaneous endothermic reaction and the affinity between adsorbent and adsorbate is very good. Hybrid beads can efficiently adsorb and remove Pb(II) as an inexpensive and environmentally friendly adsorbent.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Choi, H. J. (2016). Behavior of Pb(II) and Cd(II) removal from aqueous solution by adsorption onto methyl-esterified sericite, KSWT J. Water Treat, 24(4), pp. 87-100.
  2. Choi, H. J. (2014). Effect of Pb and Cd removal by various calcined eggshells, KSWST J. Water Treat, 22(6), pp. 111-120. https://doi.org/10.17640/KSWST.2014.22.6.111
  3. Choi, H. J., Yu, S. W. (2015). Heavy metal removal using modified zeolite. KSWST J. Water Treat, 23(4), pp. 15-22. https://doi.org/10.17640/KSWST.2015.23.4.15
  4. Xu, X., Gao, B., Jin, B., Yue, Q. (2016). Removal of anionic pollutants from liquids by biomass materials: A review, J. Mol. Liq., 215, pp. 565-595. https://doi.org/10.1016/j.molliq.2015.12.101
  5. Chen, H., Zhao, J., Dai, G., Wu, J., Yan, H. (2010). Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves, Desalination, 262, pp. 174-182. https://doi.org/10.1016/j.desal.2010.06.006
  6. Garg, U., Kaur, M. P., Jawa, G. K., Sud, D., Garg, V. K. (2008). Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass, J. Hazard. Mater., 154, pp. 1149-1157. https://doi.org/10.1016/j.jhazmat.2007.11.040
  7. Xu, Q., Wang, Y., Jin, L., Wang, Y., Qin, M. (2017). Adsorption of Cu(II), Pb(II) and Cr(II) from aqueous solution using black wattle tannin-immobilized nanocellouse, J. Hazard. Mater. 339, pp. 91-99. https://doi.org/10.1016/j.jhazmat.2017.06.005
  8. Heidari, A., Younesi, H., Mehraban, Z., Heikkinen, H. (2013). Selective adsorption of Pb(II), Cd(II) and Ni(II) ions from aqueous solution using chitosan-MAA nanoparticles, Int. J. Biol. Marcromol., 61, pp. 251-263. https://doi.org/10.1016/j.ijbiomac.2013.06.032
  9. He, J., Lu, Y., Luo, G. (2014). Ca(II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions, Chem. Eng. J., 244, pp. 202-208. https://doi.org/10.1016/j.cej.2014.01.096
  10. Li, M., Zhang, Z., Li, R., Wang, J. J., Ali, A. (2016). Removal of Pb(II) and Cd(II) ins from aqueous solution by thiosemicarbazide modified chitosan, Int. J. Biol. Macromol., 86, pp. 876-884. https://doi.org/10.1016/j.ijbiomac.2016.02.027
  11. Yurtsever, M., Sengil, I. A. (2009). Biosorption of Pb(II) ions by modified quebracho tannin resin, J. Hazard. Mater., 163, pp. 58-64. https://doi.org/10.1016/j.jhazmat.2008.06.077
  12. Zhan, X. M., Zhao, X. (2003). Mechanism of lead adsorption from aqueous solutions using as adsorbent synthesized from natural condensed tannin, Water Res., 37, pp. 3905-3912. https://doi.org/10.1016/S0043-1354(03)00312-9
  13. Zhao, F., Repo, E., Yin, D., Sillanpaa, M. E. T. (2013). Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: kinetics and isotherms, J. Colloid Interface Sci., 409, pp. 174-182. https://doi.org/10.1016/j.jcis.2013.07.062
  14. Wan, N. W. S., Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review, Bioresour. Technol., 99, pp. 3935-3948. https://doi.org/10.1016/j.biortech.2007.06.011
  15. Sankaramarkrishnan, N., Sanghi, R. (2006). Preparation and characterization of a novel xanthated chitosan, Carbohyd. Polym., 66, pp. 160-167. https://doi.org/10.1016/j.carbpol.2006.02.035
  16. Liu, D., Li, Z., Zhu, Y., Li, Z., Kumar, R. (2014). Recyled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: adsorption and desorption performance, Carbohyd. Polym., 111, pp. 469-476. https://doi.org/10.1016/j.carbpol.2014.04.018
  17. Shen, Q., Ding, H. G., Zhong, L. (2004). Characterization of the surface properties of persimmon leaves by FT-IR-Raman spectroscopy and wicking technique, Colloid. Surf. B: Biointerfaces, 37(3-4), pp. 133-136. https://doi.org/10.1016/j.colsurfb.2004.07.006
  18. Choi, H. J., Yu, S. W., Kim, K. H. (2016). Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions, J. Taiwan Institute Chem. Eng., 63, pp. 482-489. https://doi.org/10.1016/j.jtice.2016.03.005
  19. Ali, R. M., Hamad, H. A., Hussein, M. M., Malash, G. F. (2016). Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng., 91, pp. 317-332. https://doi.org/10.1016/j.ecoleng.2016.03.015
  20. Choi, H. J., Lee, S. M. (2015). Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system, Environ. Sci. Pollut. Res., 22, pp. 13404-13411. https://doi.org/10.1007/s11356-015-4623-3
  21. Sengil, I. A., Ozacar, M. (2009). Competitive biosorption of $Pb^{2+}$, $Cu^{2+}$ and $Zn^{2+}$ ions from aqueous solutions onto valonia tannin resin, J. Hazard. Mater., 166, pp. 1488-1494. https://doi.org/10.1016/j.jhazmat.2008.12.071
  22. Sargin, I., Arslan, G. (2015). Chitosan/sporopollenin microcapsules: Preparation, characterization and application in heavy metal removal, Int. J. Biol. Macromol., 75, pp. 230-238. https://doi.org/10.1016/j.ijbiomac.2015.01.039
  23. Ho, Y. S., McKay, G. (1999). Pseudo-second order model for sorption processes, Process Biochem., 34, pp. 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  24. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40(9), pp. 1361-1403. https://doi.org/10.1021/ja02242a004
  25. Freundlich, H. (1936). Adsorptions technik, by Franz Krzil, J. Phys. Chem., 40(6), pp. 857-858. https://doi.org/10.1021/j150375a022
  26. Gibbs, J. W. (1873). A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces, Trans. Conn. Acad. Arts Sci., 2, pp. 382-404.