DOI QR코드

DOI QR Code

Reaction characteristics of Ni-Al nanolayers by molecular dynamics simulation

  • Jung, Gwan Yeong (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jeon, Woo Cheol (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Sukbin (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jung, Sang-Hyun (The 4th Research and Development Institute, Agency for Defense Development (ADD)) ;
  • Cho, Soo Gyeong (The 4th Research and Development Institute, Agency for Defense Development (ADD)) ;
  • Kwak, Sang Kyu (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2017.08.06
  • Accepted : 2017.08.18
  • Published : 2018.01.31

Abstract

We have performed molecular dynamics simulations to investigate the reaction characteristics of Ni-Al nanolayers by varying ignition temperature and bilayer thickness with three different compositions (1:1, 3:1, and 1:3) of Ni to Al. The overall sequence of reaction pathway was found to be unchanged by stoichiometry, but the reaction rate and the extents of intermixing varied by case. Also, the reaction kinetics and thermodynamics were quantitatively investigated by various structural and reaction conditions. Through this systematic study, the reaction characteristics of Ni-Al nanolayers were theoretically quantified, which can provide an insight into the fabrication of advanced Ni-Al nanolayer systems.

Keywords

Acknowledgement

Supported by : Agency for Defense Development (ADD)

References

  1. A.G. Merzhanov, J. Mater. Chem. 14 (2004) 1779. https://doi.org/10.1039/b401358c
  2. J.C. Trenkle, J. Wang, T.P. Weihs, T.C. Hufnagel, Appl. Phys. Lett. 87 (2005).
  3. A.S. Rogachev, S.G. Vadchenko, A.S. Mukasyan, Appl. Phys. Lett. 101 (2012).
  4. A. Varma, A.S. Mukasyan, Korean J. Chem. Eng. 21 (2004) 527. https://doi.org/10.1007/BF02705444
  5. A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reiss, T.P. Weihs, J. Appl. Phys. 87 (2000) 1255. https://doi.org/10.1063/1.372005
  6. J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio, T.P. Weihs, J. Appl. Phys. 95 (2004) 248. https://doi.org/10.1063/1.1629390
  7. J. Hong, S.W. Kang, J. Ind. Eng. Chem. 18 (2012) 1496. https://doi.org/10.1016/j.jiec.2012.02.008
  8. L. Battezzati, P. Pappalepore, F. Durbiano, I. Gallino, Acta Mater. 47 (1999) 1901. https://doi.org/10.1016/S1359-6454(99)00040-3
  9. H. Sieber, J.S. Park, J. Weissmuller, J.H. Perepezko, Acta Mater. 49 (2001) 1139. https://doi.org/10.1016/S1359-6454(01)00023-4
  10. X. Qiu, J. Graeter, L. Kecskes, J. Wang, J. Mater. Res. 23 (2008) 367. https://doi.org/10.1557/JMR.2008.0043
  11. A. Makino, Prog. Energy Combust. 27 (2001) 1. https://doi.org/10.1016/S0360-1285(00)00004-6
  12. P. Zhu, R.Q. Shen, Y.H. Ye, X. Zhou, Y. Hu, J. Appl. Phys. 110 (2011).
  13. J. Giles, Nature 427 (2004) 580. https://doi.org/10.1038/427580a
  14. K.T. Higa, J. Propul. Power 23 (2007) 722. https://doi.org/10.2514/1.25354
  15. A. Duckham, S.J. Spey, J. Wang, M.E. Reiss, T.P. Weihs, E. Besnoin, O.M. Knio, J. Appl. Phys. 96 (2004) 2336. https://doi.org/10.1063/1.1769097
  16. A.J. Swiston, E. Besnoin, A. Duckham, O.M. Knio, T.P. Weihs, T.C. Hufnagel, Acta Mater. 53 (2005) 3713. https://doi.org/10.1016/j.actamat.2005.04.030
  17. J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio, M. Powers, M. Whitener, T.P. Weihs, Appl. Phys. Lett. 83 (2003) 3987. https://doi.org/10.1063/1.1623943
  18. S. Zhao, T.C. Germann, A. Strachan, J. Chem. Phys. 125 (2006).
  19. J.S. Kim, T. LaGrange, B.W. Reed, M.L. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, G.H. Campbell, Science 321 (2008) 1472. https://doi.org/10.1126/science.1161517
  20. K. Barmak, C. Michaelsen, G. Lucadamo, J. Mater. Res. 12 (1997) 133. https://doi.org/10.1557/JMR.1997.0021
  21. I.E. Gunduz, K. Fadenberger, M. Kokonou, C. Rebholz, C.C. Doumanidis, T. Ando, J. Appl. Phys. 105 (2009).
  22. R. Knepper, M.R. Snyder, G. Fritz, K. Fisher, O.M. Knio, T.P. Weihs, J. Appl. Phys. 105 (2009).
  23. J.C. Trenkle, L.J. Koerner, M.W. Tate, S.M. Gruner, T.P. Weihs, T.C. Hufnagel, Appl. Phys. Lett. 93 (2008).
  24. K. Fadenberger, I.E. Gunduz, C. Tsotsos, M. Kokonou, S. Gravani, S. Brandstetter, A. Bergamaschi, B. Schmitt, P.H. Mayrhofer, C.C. Doumanidis, C. Rebholz, Appl. Phys. Lett. 97 (2010).
  25. G.P. Purja Pun, Y. Mishin, Philos. Mag. 89 (2009) 3245. https://doi.org/10.1080/14786430903258184
  26. M.J. Cherukara, K.G. Vishnu, A. Strachan, Phys. Rev. B 86 (2012).
  27. U. Rothhaar, H. Oechsner, M. Scheib, R. Muller, Phys. Rev. B 61 (2000) 974. https://doi.org/10.1103/PhysRevB.61.974
  28. Y.K. Shin, H. Kwak, C.Y. Zou, A.V. Vasenkov, A.C.T. van Duin, J. Phys. Chem. A 116 (2012) 12163. https://doi.org/10.1021/jp308507x
  29. S.J. Plimpton, J. Comput. Phys. 117 (1995) 1. https://doi.org/10.1006/jcph.1995.1039
  30. N.S. Weingarten, W.D. Mattson, A.D. Yau, T.P. Weihs, B.M. Rice, J. Appl. Phys.107 (2010).
  31. L. Sandoval, G.H. Campbell, J. Marian, Model. Simul. Mater. Sci. Eng. 22 (2014).
  32. S. Zhao, T.C. Germann, A. Strachan, Phys. Rev. B 76 (2007).

Cited by

  1. Mechanical properties of single crystal copper ellipsoidal nanoshells by molecular dynamics vol.32, pp.16, 2018, https://doi.org/10.1142/s0217979218501965
  2. Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses vol.19, pp.6, 2018, https://doi.org/10.5762/kais.2018.19.6.167
  3. SCR 촉매에 포함된 조촉매 영향 vol.19, pp.9, 2018, https://doi.org/10.5762/kais.2018.19.9.474
  4. Effect of deposition substrates on surface topography, interface roughness and phase transformation of the Al/Ni multilayers vol.546, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2021.149098
  5. Phase Transformation and Characterization of 3D Reactive Microstructures in Nanoscale Al/Ni Multilayers vol.11, pp.19, 2018, https://doi.org/10.3390/app11199304