DOI QR코드

DOI QR Code

Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution

  • Alvarez, Patricia E. (Catedra Fisica I, Instituto de Fisica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman) ;
  • Fiori-Bimbi, M. Victoria (Catedra Fisica I, Instituto de Fisica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman) ;
  • Neske, Adriana (Instituto de Quimica Organica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman) ;
  • Brandan, Silvia A. (Catedra Quimica General, Instituto de Quimica Inorganica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman) ;
  • Gervasi, Claudio A. (INIFTA-CONICET, Facultad de Ciencias Exactas, UNLP)
  • Received : 2016.09.27
  • Accepted : 2017.09.06
  • Published : 2018.02.28

Abstract

An extract of Rollinia occidentalis as well as pure solutions of two acetogenins isolated from this extract, namely Rolliniastatin-1 and Motrilin, were tested as corrosion inhibitors for carbon steel in acidic solutions. Weight loss measurements were performed in the 298-328 K temperature range and the obtained data were used to calculate corrosion rate and inhibition efficiency. It was found that the extract and the acetogenins solutions act as good corrosion inhibitors for the tested C-steel in 1 M HCl media. Moreover, results from potentiodynamic polarization measurements indicate that R. occidentalis and the two tested acetogenins act as mixed-type inhibitors. Data collected from EIS studies were modeled with an equivalent circuit containing a single time constant what can be understood in terms of a corrosion inhibition process resulting from the geometric blocking effect of the carbon steel surface by an adsorbed inhibitor species. Inhibitor adsorption follows a Langmuir adsorption isotherm. The inhibition efficiency decreases with increasing temperature and extract concentration. Spectroscopic analysis points to the formation of a complex between metal cations and compounds present in the R. occidentalis extract. This additional aspect is considered in the proposed inhibition mechanism of C-steel.

Keywords

Acknowledgement

Supported by : Agencia Nacional de Promocion Cientifica y Tecnologica

References

  1. F. Bentiss, M. Lagrenee, M. Traisnel, J.C. Hornez, Corros. Sci. 41 (1999) 789. https://doi.org/10.1016/S0010-938X(98)00153-X
  2. 10th edition, F. Reidenbach (Ed.), ASM Metal Handbook, Surface Engineering, vol. 5, ASM International, 1994.
  3. M.H. Wahdan, A.A. Hermas, M.S. Morad, Mater. Chem. Phys. 76 (2002) 111. https://doi.org/10.1016/S0254-0584(01)00526-0
  4. K. Sapre, S.S. Seal, P. Jepson, H.B. Wang, Z. Rahman, T. Smith, Corros. Sci. 45 (2003) 59. https://doi.org/10.1016/S0010-938X(02)00049-5
  5. A.A. El-Shafei, M.H. Moussa, A.A. El-Far, Mater. Chem. Phys. 70 (2001) 175. https://doi.org/10.1016/S0254-0584(00)00496-X
  6. R.S. Concalves, D.S. Acambuja, A.M. Serpa, Corros. Sci. 44 (2002) 467. https://doi.org/10.1016/S0010-938X(01)00069-5
  7. R.F.V. Villamill, P. Corio, J.C. Rubim, S.M.I. Agostinho, J. Electroanal. Chem. 535 (2002) 75. https://doi.org/10.1016/S0022-0728(02)01153-1
  8. L. Wang, J.X. Pu, H. Luo, Corros. Sci. 45 (2003) 677. https://doi.org/10.1016/S0010-938X(02)00145-2
  9. Y. Ein-Eli, M. Auinat, D. Starovetsky, J. Power Sources 114 (2003) 330. https://doi.org/10.1016/S0378-7753(02)00598-0
  10. K. Aromaki, Corros. Sci. 43 (2001) 1985. https://doi.org/10.1016/S0010-938X(00)00174-8
  11. S. Garai, P. Jaisankar, J.K. Singh, A. Elango, Corros. Sci. 60 (2012) 193. https://doi.org/10.1016/j.corsci.2012.03.036
  12. X. Li, S. Deng, H. Fu, X. Xie, Corros. Sci. 78 (2014) 29. https://doi.org/10.1016/j.corsci.2013.08.025
  13. C. Kamal, M.G. Sethuraman, Ind. Eng. Chem. Res. 51 (2012) 10399. https://doi.org/10.1021/ie3010379
  14. A. Ostovari, S.M. Hoseinieh, M. Peikari, S.R. Shadizadeh, S.J. Hashemi, Corros. Sci. 51 (2009) 1935. https://doi.org/10.1016/j.corsci.2009.05.024
  15. N.A. Odewunmi, S.A. Umoren, Z.M. Gasem, S.A. Ganiyu, Q. Muhammad, J. Taiwan Inst. Chem. Eng. 51 (2015) 177. https://doi.org/10.1016/j.jtice.2015.01.012
  16. K.P. Vinod Kumar, M. Sankara Narayana Pillar, G. Rexin Thusnavis, J. Mater. Sci. Technol. 27 (2011) 1143.
  17. Diego Tolosa, Olga Alvarez Colom, Alicia Bardón, Adriana Neske, Nat. Prod. Commun. 7 (2012) 1645.
  18. M.G. Sethuraman, V. Aishwarya, C. Kamal, T. Jebakumar Immanuel Edison, Arab. J. Chem. 10 (1) (2012) S522-S530.
  19. D.K. Yadav, M. Quraishi, Ind. Eng. Chem. Res. 51 (2012) 14966. https://doi.org/10.1021/ie301840y
  20. A. Popova, E. Sokolova, S. Raicheva, M. Christov, Corros. Sci. 45 (2003) 33. https://doi.org/10.1016/S0010-938X(02)00072-0
  21. F. Mansfeld, Corrosion 29 (1973) 397. https://doi.org/10.5006/0010-9312-29.10.397
  22. F. Mansfeld, J. Solid State Electrochem. 13 (2009) 515. https://doi.org/10.1007/s10008-008-0652-x
  23. C. Cao, Corros. Sci. 38 (1996) 2073. https://doi.org/10.1016/S0010-938X(96)00034-0
  24. C.H. Hsu, F. Mansfeld, Corrosion 57 (2001) 747. https://doi.org/10.5006/1.3280607
  25. S. Breda, I. Reva, R. Fausto, J. Mol. Struct. 887 (2008) 75. https://doi.org/10.1016/j.molstruc.2008.02.034
  26. L.C. Bichara, M.V. Fiori Bimbi, C.A. Gervasi, P.E. Alvarez, S.A. Brandan, J. Mol. Struct. 1008 (2012) 95. https://doi.org/10.1016/j.molstruc.2011.11.032
  27. W.J. Barreto, S. Regina, G. Barreto, I. Moreira, Quim. Nova 29 (2006) 1255. https://doi.org/10.1590/S0100-40422006000600021
  28. N. Sharma, K. Chaturvedi, Int. J. Curr. Microbiol. Appl. Sci. 3 (2014) 65.
  29. A. Vogler, H. Kunkely, Inorg. Chim. Acta 44 (1980) L211. https://doi.org/10.1016/S0020-1693(00)91009-0
  30. Laura C. Bichara, Patricia E. Alvarez, Maria V. Fiori Bimbi, Claudio Gervasi, Silvia A. Brandan, Infrared Phys. Technol. 76 (2016) 315. https://doi.org/10.1016/j.infrared.2016.03.009
  31. Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, N. Himidi, H. Hannache, Mater. Chem. Phys. 105 (2007) 1. https://doi.org/10.1016/j.matchemphys.2007.03.037
  32. D. Ehrt, D. Moncke, Charge transfer absorption of $Fe^{3+}$ and $Fe^{2+}$ complexes and UV radiation induced defects in different glasses, Conference: 6th ESG, June 2- 6, 2002, Montpellier, France, 2017 Available at http://www.kdsolution.com/pdf_upload/Ehrt.pdf.

Cited by

  1. Use of Asparagus racemosus extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4 vol.53, pp.11, 2018, https://doi.org/10.1007/s10853-018-2123-9
  2. Areca Plant Extracts as a Green Corrosion Inhibitor of Carbon Steel Metal in 3 M Hydrochloric Acid: Gasometric, Colorimetry and Atomic Absorption Spectroscopy Views vol.6, pp.2, 2018, https://doi.org/10.1142/s2251237318500041
  3. A Green and Sustainable Approach for Mild Steel Acidic Corrosion Inhibition Using Leaves Extract: Experimental and DFT Studies vol.4, pp.3, 2018, https://doi.org/10.1007/s40735-018-0150-3
  4. Rhizophoraapiculata Extract as Corrosion Inhibitor in 3.5% NaCl for API 5L Steel vol.791, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/kem.791.83
  5. Highly efficient eco-friendly corrosion inhibitor for mild steel in 5 M HCl at elevated temperatures: experimental & molecular dynamics study vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-40149-w
  6. Effect of pH, Rotation Speed and Imidazoline - Paracetamol Based Inhibitor Volume Ratio on Corrosion Protection of St 41 Steel in CO2 Environment Using Rotating Cylinder Electrode (RCE) vol.964, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/msf.964.7
  7. Pineapple stem extract (Bromelain) as an environmental friendly novel corrosion inhibitor for low carbon steel in 1 M HCl vol.134, pp.None, 2018, https://doi.org/10.1016/j.measurement.2018.11.003
  8. Bark resin of Schinus molle as an eco‐friendly inhibitor for API 5L X70 pipeline steel in HCl medium vol.70, pp.3, 2018, https://doi.org/10.1002/maco.201810477
  9. Nano- to Micro-Self-Aggregates of New Bisimidazole-Based Copoly(ionic liquid)s for Protecting Copper in Aqueous Sulfuric Acid Solution vol.11, pp.10, 2019, https://doi.org/10.1021/acsami.8b19993
  10. Corrosion inhibition of stainless steel in sulfuric acid solution containing sulfide ions vol.66, pp.3, 2018, https://doi.org/10.1108/acmm-10-2018-2016
  11. Corydalis yanhusuo extract as a green inhibitor for J55 steel in 3.5%NaCl solution saturated with CO2 vol.12, pp.3, 2018, https://doi.org/10.1080/17518253.2019.1642961
  12. Latest Exploration on Natural Corrosion Inhibitors for Industrial Important Metals in Hostile Fluid Environments: A Comprehensive Overview vol.5, pp.3, 2019, https://doi.org/10.1007/s40735-019-0240-x
  13. Thiazole Ionic Liquid as Corrosion Inhibitor of Steel in 1 M HCl Solution: Gravimetrical, Electrochemical, and Theoretical Studies vol.5, pp.3, 2018, https://doi.org/10.1007/s40735-019-0246-4
  14. Expired Lorazepam Drug: A Medicinal Compound as Green Corrosion Inhibitor for Mild Steel in Hydrochloric Acid System vol.2, pp.3, 2019, https://doi.org/10.1007/s42250-019-00061-2
  15. Experimental and fractal studies on corrosion inhibition performance of Ophiopogon japonicus leaf extract on carbon steel in HCl vol.6, pp.10, 2018, https://doi.org/10.1088/2053-1591/ab4107
  16. Capability of Aganonerion polymorphum leaf-water extract in protecting hydrochloric acid induced steel corrosion vol.43, pp.39, 2018, https://doi.org/10.1039/c9nj04079j
  17. 1-(2-Aminoethyl)-1-dodecyl-2-undecyl-4,5-dihydro-1H-imidazol-1-ium chloride, 1-(2-Aminoethyl)-1-dodecyl-2-tridecyl-4,5-dihydro-1H-imidazol-1-ium chloride as Corrosion Inhibitors for Carbon Steel in Oi vol.233, pp.11, 2019, https://doi.org/10.1515/zpch-2018-1207
  18. FT-IR, FT-Raman and UV-visible spectra of motrilin acetogenin isolated from Annona cherimolia vol.1196, pp.None, 2019, https://doi.org/10.1016/j.molstruc.2019.06.107
  19. The inhibition of mild steel corrosion in 0.5 M H2SO4 solution by radish leaf extract vol.9, pp.70, 2018, https://doi.org/10.1039/c9ra04218k
  20. Synthesis, characterization and application of acrylate-based poly ionic liquid for corrosion protection of C1020 steel In hydrochloric acid solution vol.7, pp.1, 2018, https://doi.org/10.1088/2053-1591/ab6000
  21. Corrosion inhibition on mild steel in 1 M HCl solution byCryptocarya nigraextracts and three of its constituents (alkaloids) vol.10, pp.11, 2018, https://doi.org/10.1039/c9ra05654h
  22. Pterocarpus santalinoides leaves extract as a sustainable and potent inhibitor for low carbon steel in a simulated pickling medium vol.15, pp.None, 2020, https://doi.org/10.1016/j.scp.2019.100196
  23. Corrosion inhibition by a superhydrophobic surface on aluminum that was prepared with a facile electrochemical route vol.7, pp.5, 2018, https://doi.org/10.1088/2053-1591/ab9253
  24. Unveiling Corrosion Behavior of Pipeline Steels in CO2-Containing Oilfield Produced Water: Towards Combating the Corrosion Curse vol.45, pp.3, 2018, https://doi.org/10.1080/10408436.2019.1588706
  25. Spraying Preparation of Eco-Friendly Superhydrophobic Coatings with Ultralow Water Adhesion for Effective Anticorrosion and Antipollution vol.12, pp.22, 2018, https://doi.org/10.1021/acsami.0c06074
  26. Plant Extracts as Green Corrosion Inhibitors for Different Metal Surfaces and Corrosive Media: A Review vol.8, pp.8, 2020, https://doi.org/10.3390/pr8080942
  27. Temperature effect on the efficiency of Eucalyptus Camaldulensis leaves in the acid corrosion of carbon steel vol.42, pp.p5, 2018, https://doi.org/10.1016/j.matpr.2020.12.566
  28. Study of Adsorption/Desorption Effect of 2-Mercaptobenzothiazole as Sweet Corrosion Inhibitor on API-5L X60 Steel vol.57, pp.1, 2021, https://doi.org/10.1134/s2070205120060106
  29. Apostichopus japonicus polysaccharide as efficient sustainable inhibitor for mild steel against hydrochloric acid corrosion vol.321, pp.None, 2018, https://doi.org/10.1016/j.molliq.2020.114923
  30. Multilayer Perceptron Model for the prediction of corrosion rate of Aluminium Alloy 5083 in seawater via different training algorithms vol.646, pp.1, 2021, https://doi.org/10.1088/1755-1315/646/1/012058
  31. Synthesis of bio-based nickel nanoparticles composite, characterization and corrosion in hibition in simulated oilfield microbial and acidizing environments vol.35, pp.1, 2018, https://doi.org/10.1080/01694243.2020.1785992
  32. Synergistic effect of salts on the corrosion inhibitive action of plant extract: a review vol.35, pp.2, 2018, https://doi.org/10.1080/01694243.2020.1797336
  33. Phytochemicals as steel corrosion inhibitor: an insight into mechanism vol.39, pp.1, 2018, https://doi.org/10.1515/corrrev-2020-0046
  34. 화장품과 식품 재료를 이용한 각종 산업장비 녹(rust) 세정에 관한 연구 vol.38, pp.1, 2021, https://doi.org/10.12925/jkocs.2021.38.1.19
  35. Aerva lanata flowers extract as green corrosion inhibitor of low-carbon steel in HCl solution: an in vitro study vol.75, pp.3, 2018, https://doi.org/10.1007/s11696-020-01361-5
  36. Investigation on the interfacial behavior of polyorganic inhibitors on a metal surface by DFT study and MD simulation vol.541, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2020.148570
  37. Corrosion inhibition assessment on API 5L X70 steel by preussomerin G immersed in saline and saline acetic vol.35, pp.8, 2018, https://doi.org/10.1080/01694243.2020.1826828
  38. A comprehensive electronic-scale DFT modeling, atomic-level MC/MD simulation, and electrochemical/surface exploration of active nature-inspired phytochemicals based on Heracleum persicum seeds phytoex vol.331, pp.None, 2018, https://doi.org/10.1016/j.molliq.2021.115764
  39. A Review on Plants and Biomass Wastes as Organic Green Corrosion Inhibitors for Mild Steel in Acidic Environment vol.11, pp.7, 2018, https://doi.org/10.3390/met11071062
  40. Plant extracts as green corrosion inhibitor for ferrous metal alloys: A review vol.304, pp.None, 2021, https://doi.org/10.1016/j.jclepro.2021.127030
  41. Use of a Gemini-Surfactant Synthesized from the Mango Seed Oil as a CO2-Corrosion Inhibitor for X-120 Steel vol.14, pp.15, 2018, https://doi.org/10.3390/ma14154206
  42. Arylamino Substituted Mercaptoimidazole Derivatives as New Corrosion Inhibitors for Carbon Steel in Acidic Media: Experimental and Computational Study vol.12, pp.3, 2018, https://doi.org/10.33961/jecst.2021.00045
  43. Synergistic Effect of Iodide Ion and N ‐methyl‐ N,N,N ‐trioctylammonium Chloride on Corrosion Inhibition of Carbon Steel in 0.5 M H 2 SO 4 : Experimental and vol.6, pp.41, 2021, https://doi.org/10.1002/slct.202102837
  44. New small gemini ionic liquids for intensifying adsorption and corrosion resistance of copper surface in sulfuric acid solution vol.9, pp.6, 2018, https://doi.org/10.1016/j.jece.2021.106679
  45. Anthocyanin as sustainable and non-toxic corrosion inhibitor for mild steel in HCl media: Electrochemical, surface morphology and theoretical investigations vol.344, pp.None, 2021, https://doi.org/10.1016/j.molliq.2021.117721
  46. Corrosion protection evaluation of Allium Jesdianum as a novel and green source inhibitor for mild steel in 1M HCl solution vol.344, pp.None, 2018, https://doi.org/10.1016/j.molliq.2021.117768
  47. Improved electrochemical strategy to characterize adsorption and corrosion inhibition related to biomolecules from plant extracts: The case of Annona cherimola vol.4, pp.None, 2022, https://doi.org/10.1016/j.rechem.2021.100233
  48. Investigation of Tetraazaadamantane as Corrosion Inhibitor for Mild Steel in Oilfield Produced Water Under Sweet Corrosive Environment vol.8, pp.1, 2018, https://doi.org/10.1007/s40735-021-00626-0