DOI QR코드

DOI QR Code

Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration

  • Sarango, Lilian (Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza) ;
  • Paseta, Lorena (Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza) ;
  • Navarro, Marta (Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza) ;
  • Zornoza, Beatriz (Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza) ;
  • Coronas, Joaquin (Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza)
  • Received : 2017.06.14
  • Accepted : 2017.09.28
  • Published : 2018.03.31

Abstract

ZIF-8 and ZIF-67 particles, with sizes of $70{\pm}10nm$ and $240{\pm}40nm$, respectively, were deposited by dip-coating on top of polyimide $P84^{(R)}$ asymmetric supports. In the best conditions, this gives rise to a MOF (metal-organic framework) monolayer which remains on the polyimide support during the interfacial polymerization of polyamide carried out to produce a thin film nanocomposite membrane for organic solvent nanofiltration (OSN). This method is simple, shorter and is environmentally friendly, since no excess MOF is lost during the interfacial polymerization, exhibiting good OSN results: dye rejection of 90% together with a high methanol permeance of $8.7Lm^{-2}h^{-1}bar^{-1}$.

Keywords

Acknowledgement

Supported by : Spanish Ministry of Economy and Competitiveness (MINECO), FEDER

References

  1. P. Marchetti, M.F. Jimenez Solomon, G. Szekely, A.G. Livingston, Chem. Rev. 114 (2014) 10735. https://doi.org/10.1021/cr500006j
  2. M.-B. Wu, Y. Lv, H.-C. Yang, L.-F. Liu, X. Zhang, Z.-K. Xu, J. Membr. Sci. 515 (2016) 238. https://doi.org/10.1016/j.memsci.2016.05.056
  3. P. Wen, Y. Chen, X. Hu, B. Cheng, D. Liu, Y. Zhang, S. Nair, J. Membr. Sci. 535 (2017) 208. https://doi.org/10.1016/j.memsci.2017.04.043
  4. S. Sorribas, P. Gorgojo, C. Tellez, J. Coronas, A.G. Livingston, J. Am. Chem. Soc. 135 (2013) 15201. https://doi.org/10.1021/ja407665w
  5. C. Wang, Z. Li, J. Chen, Z. Li, Y. Yin, L. Cao, Y. Zhong, H. Wu, J. Membr. Sci. 523 (2017) 273. https://doi.org/10.1016/j.memsci.2016.09.055
  6. B. Zornoza, A. Martinez-Joaristi, P. Serra-Crespo, C. Tellez, J. Coronas, J. Gascon, F. Kapteijn, Chem. Commun. 47 (2011) 9522. https://doi.org/10.1039/c1cc13431k
  7. J.T. Duan, Y.C. Pan, F. Pacheco, E. Litwiller, Z.P. Lai, I. Pinnau, J. Membr. Sci. 476 (2015) 303. https://doi.org/10.1016/j.memsci.2014.11.038
  8. X.L. Dong, Y.S. Lin, Chem. Commun. 49 (2013) 1196. https://doi.org/10.1039/c2cc38512k
  9. M.F.J. Solomon, Y. Bhole, A.G. Livingston, J. Membr. Sci. 423 (2012) 371.
  10. J. Campbell, J.D.S. Burgal, G. Szekely, R.P. Davies, D.C. Braddock, A. Livingston, J. Membr. Sci. 503 (2016) 166. https://doi.org/10.1016/j.memsci.2016.01.024
  11. M. Razali, J.F. Kim, M. Attfield, P.M. Budd, E. Drioli, Y.M. Lee, G. Szekely, Green Chem. 17 (2015) 5196. https://doi.org/10.1039/C5GC01937K
  12. S. Hermans, H. Marien, C. Van Goethem, I.F.J. Vankelecom, Curr. Opin. Chem. Eng. 8 (2015) 45. https://doi.org/10.1016/j.coche.2015.01.009
  13. L.S. White, J. Membr. Sci. 205 (2002) 191. https://doi.org/10.1016/S0376-7388(02)00115-1
  14. I. Soroko, M.P. Lopes, A. Livingston, J. Membr. Sci. 381 (2011) 152. https://doi.org/10.1016/j.memsci.2011.07.027
  15. J.E. Cadotte, ACS Symp. Ser. 269 (1985) 273.
  16. P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Chem. Soc. Rev. 37 (2008) 365. https://doi.org/10.1039/B610848M
  17. M. Paul, S.D. Jons, Polymer 103 (2016) 417. https://doi.org/10.1016/j.polymer.2016.07.085
  18. B.-H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, J. Membr. Sci. 294 (2007) 1. https://doi.org/10.1016/j.memsci.2007.02.025
  19. I.-C. Kim, J. Jegal, K.-H. Lee, J. Polym. Sci. B 40 (2002) 2151. https://doi.org/10.1002/polb.10265
  20. P.B. Kosaraju, K.K. Sirkar, J. Membr. Sci. 321 (2008) 155. https://doi.org/10.1016/j.memsci.2008.04.057
  21. C. Van Goethem, R. Verbeke, S. Hermans, R. Bernstein, I.F.J. Vankelecom, J. Mater. Chem. A 4 (2016) 16368. https://doi.org/10.1039/C6TA05175H
  22. L.E.M. Gevers, I.F.J. Vankelecom, P.A. Jacobs, Chem. Commun. (2005) 2500.
  23. L.E.M. Gevers, I.F.J. Vankelecom, P.A. Jacobs, J. Membr. Sci. 278 (2006) 199. https://doi.org/10.1016/j.memsci.2005.10.056
  24. S. Basu, M. Maes, A. Cano-Odena, L. Alaerts, D.E. De Vos, I.F.J. Vankelecom, J. Membr. Sci. 344 (2009) 190. https://doi.org/10.1016/j.memsci.2009.07.051
  25. J. Campbell, G. Szekely, R.P. Davies, D.C. Braddock, A.G. Livingston, J. Mater. Chem. A 2 (2014) 9260. https://doi.org/10.1039/C4TA00628C
  26. L. Wang, M. Fang, J. Liu, J. He, L. Deng, J. Li, J. Lei, RSC Adv. 5 (2015) 50942. https://doi.org/10.1039/C5RA06185G
  27. L.Y. Wang, M.Q. Fang, J. Liu, J. He, J.D. Li, J.D. Lei, ACS Appl. Mater. Interfaces 7 (2015) 24082. https://doi.org/10.1021/acsami.5b07128
  28. C.J. Brinker, G.C. Frye, A.J. Hurd, C.S. Ashley, Thin Solid Films 201 (1991) 97. https://doi.org/10.1016/0040-6090(91)90158-T
  29. K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 10186. https://doi.org/10.1073/pnas.0602439103
  30. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O.M. Yaghi, Science 319 (2008) 939. https://doi.org/10.1126/science.1152516
  31. J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 21 (2009) 1410. https://doi.org/10.1021/cm900166h
  32. W. Sun, X. Zhai, L. Zhao, Chem. Eng. J. 289 (2016) 59. https://doi.org/10.1016/j.cej.2015.12.076
  33. Y.H. See Toh, F.W. Lim, A.G. Livingston, J. Membr. Sci. 301 (2007) 3. https://doi.org/10.1016/j.memsci.2007.06.034
  34. F.H. Aragon, P.E.N. de Souza, J.A.H. Coaquira, P. Hidalgo, D. Gouvea, Phys. Rev. B 407 (2012) 2601.
  35. J. Benito, M. Fenero, S. Sorribas, B. Zornoza, K.J. Msayib, N.B. McKeown, C. Tellez, J. Coronas, Ignacio Gascon, Colloids Surf. A 470 (2015) 161. https://doi.org/10.1016/j.colsurfa.2015.01.082
  36. D. Quere, Physica A 313 (2002) 32. https://doi.org/10.1016/S0378-4371(02)01033-6
  37. A.V. Volkov, V.V. Parashchuk, D.F. Stamatialis, V.S. Khotimsky, V.V. Volkov, M. Wessling, J. Membr. Sci. 333 (2009) 88. https://doi.org/10.1016/j.memsci.2009.01.050
  38. S. Roy, S.A. Ntim, S. Mitra, K.K. Sirkar, J. Membr. Sci. 375 (2011) 81. https://doi.org/10.1016/j.memsci.2011.03.012
  39. X. Yang, A. Livingston, L.F. Dos Santos, J. Membr. Sci. 190 (2001) 45. https://doi.org/10.1016/S0376-7388(01)00392-1
  40. C. Echaide-Gorriz, S. Sorribas, C. Tellez, J. Coronas, RSC Adv. 6 (2016) 90417. https://doi.org/10.1039/C6RA17522H
  41. F. Cacho-Bailo, I. Matito-Martos, J. Perez-Carbajo, M. Etxeberria-Benavides, O. Karvan, V. Sebastian, S. Calero, C. Tellez, J. Coronas, Chem. Sci. 8 (2017) 325. https://doi.org/10.1039/C6SC02411D
  42. B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele, J. Membr. Sci. 156 (1999) 29. https://doi.org/10.1016/S0376-7388(98)00326-3
  43. H.-S. Park, S.-W. Kang, L. Tortora, Y. Nastishin, D. Finotello, S. Kumar, O.D. Lavrentovich, J. Phys. Chem. B. 112 (2008) 16307. https://doi.org/10.1021/jp804767z
  44. M. Liu, D. Wu, S. Yu, C. Gao, J. Membr. Sci. 326 (2009) 205. https://doi.org/10.1016/j.memsci.2008.10.004
  45. M.L. Lind, A.K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, E.M.V. Hoek, Langmuir 25 (2009) 10139. https://doi.org/10.1021/la900938x
  46. C. Echaide-Gorriz, M. Navarro, C. Tellez, J. Coronas, Dalton Trans. 46 (2017) 6244. https://doi.org/10.1039/C7DT00197E

Cited by

  1. Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities vol.57, pp.12, 2018, https://doi.org/10.1021/acs.iecr.7b04796
  2. Electrospun nanofiber substrates that enhance polar solvent separation from organic compounds in thin-film composites vol.6, pp.31, 2018, https://doi.org/10.1039/c8ta04504f
  3. Nanocomposite hollow fiber membranes with recyclable β-cyclodextrin encapsulated magnetite nanoparticles for water vapor separation vol.6, pp.47, 2018, https://doi.org/10.1039/c8ta09413f
  4. Polysulfone/Polyamide-SiO 2 Composite Membrane with High Permeance for Organic Solvent Nanofiltration vol.8, pp.4, 2018, https://doi.org/10.3390/membranes8040089
  5. A Coupled Thermodynamic Model for Transport Properties of Thin Films during Physical Aging vol.11, pp.3, 2018, https://doi.org/10.3390/polym11030387
  6. 110th Anniversary: Polyamide/Metal-Organic Framework Bilayered Thin Film Composite Membranes for the Removal of Pharmaceutical Compounds from Water vol.58, pp.10, 2018, https://doi.org/10.1021/acs.iecr.8b06017
  7. Facile Preparation of Polyamide Thin-Film Nanocomposite Membranes Using Spray-Assisted Nanofiller Predeposition vol.58, pp.10, 2018, https://doi.org/10.1021/acs.iecr.9b00029
  8. Impacts of Metal-Organic Frameworks on Structure and Performance of Polyamide Thin-Film Nanocomposite Membranes vol.11, pp.14, 2018, https://doi.org/10.1021/acsami.9b01923
  9. Anti-Biofouling and Desalination Properties of Thin Film Composite Reverse Osmosis Membranes Modified with Copper and Iron Nanoparticles vol.12, pp.13, 2018, https://doi.org/10.3390/ma12132081
  10. Hydrophobic Metal–Organic Frameworks vol.31, pp.32, 2019, https://doi.org/10.1002/adma.201900820
  11. Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers vol.9, pp.8, 2018, https://doi.org/10.3390/membranes9080098
  12. Initiated Chemical Vapor Deposition of Poly(Ethylhexyl Acrylate) Films in a Large-Scale Batch Reactor vol.58, pp.32, 2018, https://doi.org/10.1021/acs.iecr.9b02213
  13. Zwitterion Co-Polymer PEI-SBMA Nanofiltration Membrane Modified by Fast Second Interfacial Polymerization vol.12, pp.2, 2018, https://doi.org/10.3390/polym12020269
  14. Metal and Covalent Organic Frameworks for Membrane Applications vol.10, pp.5, 2020, https://doi.org/10.3390/membranes10050107
  15. Nanocomposite membranes for organic solvent nanofiltration vol.49, pp.3, 2018, https://doi.org/10.1080/15422119.2018.1526805
  16. Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO2 gas sensors vol.5, pp.6, 2018, https://doi.org/10.1039/c9me00164f
  17. A review of the application of carbon-based membranes to hydrogen separation vol.55, pp.25, 2018, https://doi.org/10.1007/s10853-020-04829-7
  18. Preparation of Metal-Organic Framework/Polyvinylidene Fluoride Mixed Matrix Membranes for Water Treatment vol.59, pp.44, 2018, https://doi.org/10.1021/acs.iecr.0c03648
  19. Metal organic framework top-down and bottom-up patterning techniques vol.49, pp.43, 2018, https://doi.org/10.1039/d0dt02207a
  20. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications vol.54, pp.24, 2018, https://doi.org/10.1021/acs.est.0c05377
  21. Interfacially Polymerized Thin‐Film Composite Membranes for Organic Solvent Nanofiltration vol.8, pp.3, 2018, https://doi.org/10.1002/admi.202001671
  22. Recent Advances in Metal Organic Framework based Thin Film Nanocomposite Membrane for Nanofiltration vol.31, pp.1, 2018, https://doi.org/10.14579/membrane_journal.2021.31.1.35
  23. Metal−Organic Frameworks for Liquid Phase Applications vol.8, pp.5, 2018, https://doi.org/10.1002/advs.202003143
  24. An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery vol.60, pp.19, 2018, https://doi.org/10.1021/acs.iecr.1c00543
  25. Thin Films of Metal-Organic Framework Interfaces Obtained by Laser Evaporation vol.11, pp.6, 2018, https://doi.org/10.3390/nano11061367
  26. Designing organic solvent separation membranes: polymers, porous structures, 2D materials, and their combinations vol.2, pp.14, 2018, https://doi.org/10.1039/d1ma00373a
  27. Thin film composite solvent resistant nanofiltration membrane via interfacial polymerization on an engineered polyethylene membrane support coated with polydopamine vol.634, pp.None, 2018, https://doi.org/10.1016/j.memsci.2021.119406
  28. Construction of high performance thin-film nanocomposite nanofiltration membrane by incorporation of hydrophobic MOF-derived nanocages vol.570, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2021.151093
  29. Fabrication of a novel hybrid poly(amide-co-arylate)/MOF thin film membranes for organic solvent nanofiltration: optimization of membrane separation performance vol.328, pp.None, 2018, https://doi.org/10.1016/j.micromeso.2021.111443
  30. Metal Organic Framework Nanomaterial-Based Extraction and Proteome Analysis of Membrane and Membrane-Associated Proteins vol.93, pp.48, 2018, https://doi.org/10.1021/acs.analchem.1c03219
  31. Synthesis and application of ZIF-67 on the performance of polysulfone blend membranes vol.23, pp.None, 2018, https://doi.org/10.1016/j.mtchem.2021.100685
  32. Fabrication of Polysulfone-Surface Functionalized Mesoporous Silica Nanocomposite Membranes for Removal of Heavy Metal Ions from Wastewater vol.11, pp.12, 2018, https://doi.org/10.3390/membranes11120935