DOI QR코드

DOI QR Code

Engineered carbon fiber papers as flexible binder-free electrodes for high-performance capacitive energy storage

  • Kim, Wan-Jin (Department of Organic Materials & Fiber Engineering, Chonbuk National University) ;
  • Ko, Tae Hoon (Department of Organic Materials & Fiber Engineering, Chonbuk National University) ;
  • Seo, Min-Kang (Korea Institute of Carbon Convergence Technology) ;
  • Chung, Yong-Sik (Department of Organic Materials & Fiber Engineering, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of Organic Materials & Fiber Engineering, Chonbuk National University) ;
  • Kim, Byoung-Suhk (Department of Organic Materials & Fiber Engineering, Chonbuk National University)
  • Received : 2017.08.23
  • Accepted : 2017.10.23
  • Published : 2018.03.31

Abstract

A binder-free electrode for flexible supercapacitor applications was fabricated using carbon fiber papers (CFPs) via a facile paper making method. CV curves and galvanostatic charge/discharge profiles exhibited ideal capacitive behavior and linear voltage-time function with small IR drop. $O_2$ activation process greatly affected the porosity and surface structures. The CFP electrodes activated at $325^{\circ}C$ for 45 min by $O_2$ oxidizing gas showed highest specific capacitance of $156.9 Fg^{-1}$ and excellent cycle stability (~90.2%) after 5000 cycles at $1.0Ag^{-1}$ in 1.0 M $H_2SO_4$, which presented the possibilities as flexible electrodes with excellent electrochemical performances for EDLCs.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. H. Chen, S. Zeng, M. Chen, Y. Zhang, Q. Li, Carbon 92 (2015) 271. https://doi.org/10.1016/j.carbon.2015.04.010
  2. J.R. Miller, P. Simon, Science 321 (2008) 651. https://doi.org/10.1126/science.1158736
  3. T.H. Ko, S. Radhakrishnan, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, J. Alloys Compd. 696 (2017) 193. https://doi.org/10.1016/j.jallcom.2016.11.234
  4. Y. Nagao, Y. Nakayama, H. Oda, M. Ishikawa, J. Power Sources 166 (2007) 595. https://doi.org/10.1016/j.jpowsour.2007.01.068
  5. Q.Y. Lia, Z.S. Lia, L. Lina, X.Y. Wang, Y.F. Wang, C.H. Zhang, H.Q. Wang, Chem. Eng. J. 156 (2010) 500. https://doi.org/10.1016/j.cej.2009.10.025
  6. D.W. Jung, C.S. Lee, S. Park, E.S. Oh, Korean J. Met. Mater. 49 (2010) 419.
  7. X. Li, C. Han, X. Chen, C. Shi, Microporous Mesoporous Mater. 131 (2010) 303. https://doi.org/10.1016/j.micromeso.2010.01.007
  8. H. Wang, Y. Zhong, Q. Li, J. Yang, Q. Dai, J. Phys. Chem. Solids 69 (2008) 2420. https://doi.org/10.1016/j.jpcs.2008.04.034
  9. M. Suzuki, Carbon 32 (1994) 577. https://doi.org/10.1016/0008-6223(94)90075-2
  10. Z. Ryu, J. Zheng, M. Wang, Carbon 36 (1998) 427. https://doi.org/10.1016/S0008-6223(97)00225-X
  11. M. Enterria, F.J. Martin-Jimeno, F. Suarez-Garcia, J.I. Paredes, M.F.R. Pereira, J.I. Martins, A. Martinez-Alonso, J.M.D. Tascon, J.L. Figueiredo, Carbon 105 (2016) 474. https://doi.org/10.1016/j.carbon.2016.04.071
  12. M. Gopiraman, D. Deng, B.S. Kim, I.M. Chung, I.S. Kim, Appl. Surf. Sci. 409 (2017) 52. https://doi.org/10.1016/j.apsusc.2017.02.209
  13. S. Mitani, S.I. Lee, S.H. Yoon, Y. Korai, I. Mochida, J. Power Sources 133 (2004) 298. https://doi.org/10.1016/j.jpowsour.2004.01.047
  14. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, J. Power Sources 101 (2001) 109. https://doi.org/10.1016/S0378-7753(01)00707-8
  15. K. Leitner, A. Lerf, M. Winter, J.O. Besenhard, S. Villar-Rodil, F. Suarez-Garcia, A. Martinez-Alonso, J.M.D. Tascon, J. Power Sources 153 (2006) 419. https://doi.org/10.1016/j.jpowsour.2005.05.078
  16. S. Shiraishi, H. Kurihara, L. Shi, T. Nakayama, A. Oya, J. Electrochem. Soc. 149 (2002) A855. https://doi.org/10.1149/1.1481525
  17. Y.J. Kim, Y. Horie, Y. Matsuzawa, S. Ozaki, M. Endo, M.S. Dresselhaus, Carbon 42 (2004) 2423. https://doi.org/10.1016/j.carbon.2004.04.039
  18. B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, Electrochim. Acta 52 (2007) 4595. https://doi.org/10.1016/j.electacta.2007.01.006
  19. M. Ishikawa, A. Sakamoto, M. Monta, Y. Matsuda, K. Ishida, J. Power Sources 60 (1996) 233. https://doi.org/10.1016/S0378-7753(96)80016-4
  20. I. Tanahashi, A. Yoshida, A. Nishino, J. Electrochem. Soc. 137 (1990) 3052. https://doi.org/10.1149/1.2086158
  21. C.T. Hsieh, H. Teng, Carbon 40 (2002) 667. https://doi.org/10.1016/S0008-6223(01)00182-8
  22. S.R. Hwang, H. Teng, J. Electrochem. Soc. 149 (2002) A591. https://doi.org/10.1149/1.1467234
  23. M. Ishikawa, A. Sakamoto, M. Morita, Y. Matsuda, K. Ishida, J. Power Sources 60 (1996) 233. https://doi.org/10.1016/S0378-7753(96)80016-4
  24. Sh.H.S. Yousfani, R.H. Gong, I. Porat, Fibres Text. East. Eur. 20 (2012) 61.
  25. J.C. Lee, B.H. Lee, B.G. Kim, M.J. Park, D.Y. Lee, I.H. Kuk, H. Chung, H.S. Kang, H.S. Lee, D.H. Ahn, Carbon 35 (1997) 1479. https://doi.org/10.1016/S0008-6223(97)00098-5
  26. Y. Zhang, S.J. Park, Carbon 122 (2017) 287. https://doi.org/10.1016/j.carbon.2017.06.085
  27. D. Dollimore, P. Spooner, A. Turner, Surf. Technol. 4 (1976) 121. https://doi.org/10.1016/0376-4583(76)90024-8
  28. J. Villarroel-Rocha, D. Barrera, K. Sapag, Microporous Mesoporous Mater. 200 (2014) 68. https://doi.org/10.1016/j.micromeso.2014.08.017
  29. H.I. Joh, H.K. Song, K.B. Yi, S. Lee, Carbon 53 (2013) 399. https://doi.org/10.1016/j.carbon.2012.10.033
  30. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, Pure Appl. Chem. 57 (1985) 603. https://doi.org/10.1351/pac198557040603
  31. M. Khalfaoui, S. Knani, M.A. Hachicha, A.B. Lamine, J. Colloid Interface Sci. 263 (2003) 350. https://doi.org/10.1016/S0021-9797(03)00139-5
  32. E. Frackowiak, F. Beguin, Carbon 39 (2001) 937. https://doi.org/10.1016/S0008-6223(00)00183-4
  33. T.H. Ko, D. Lei, S. Balasubramaniam, M.K. Seo, Y.S. Chung, H.Y. Kim, B.S. Kim, Electrochim. Acta 247 (2017) 524. https://doi.org/10.1016/j.electacta.2017.07.047
  34. Y. Zhang, M. Park, H.Y. Kim, S.J. Park, J. Colloid Interface Sci. 500 (2017) 155. https://doi.org/10.1016/j.jcis.2017.04.022
  35. L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S.Y. Qiao, M. Antonietti, M.M. Titirici, Adv. Mater. 22 (2010) 5202. https://doi.org/10.1002/adma.201002647
  36. L. Sun, L. Wang, C.G. Tian, T.X. Tan, Y. Xie, K.Y. Shi, M.T. Li, H.G. Fu, RSC Adv. 2 (2012) 4498. https://doi.org/10.1039/c2ra01367c
  37. L.Z. Fan, S.Y. Qiao, W.L. Song, M. Wu, X.B. He, X.H. Qu, Electrochim. Acta 105 (2013) 299. https://doi.org/10.1016/j.electacta.2013.04.137
  38. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Y. Yang, J. Power Sources 195 (2010) 2118. https://doi.org/10.1016/j.jpowsour.2009.09.077
  39. S. Mitra, S. Sampath, Electrochem. Solid-State Lett. 7 (2004) A264. https://doi.org/10.1149/1.1773752

Cited by

  1. Facile Synthesis of Nitrogen and Oxygen Co-Doped Clews of Carbon Nanobelts for Supercapacitors with Excellent Rate Performance vol.11, pp.4, 2018, https://doi.org/10.3390/ma11040556
  2. Fabrication of electrochemical double-layer capacitor electrode using an activated carbon fiber network vol.26, pp.None, 2018, https://doi.org/10.5714/cl.2018.26.102
  3. Chemical and electrochemical treatment effects on the morphology, structure, and electrochemical performance of carbon fiber with different graphitization indexes vol.22, pp.11, 2018, https://doi.org/10.1007/s10008-018-4037-5
  4. Influence of electrochemically deposited polypyrrole layers on NiCo 2 O 4 -decorated carbon fiber paper electrodes for high-performance hybrid supercapacitor applications vol.1, pp.4, 2018, https://doi.org/10.1088/2631-6331/ab4b67
  5. Oxalic acid assisted rapid synthesis of mesoporous NiCo2O4 nanorods as electrode materials with higher energy density and cycle stability for high-performance asymmetric hybrid s vol.564, pp.None, 2018, https://doi.org/10.1016/j.jcis.2019.12.098
  6. Flexible Transparent Symmetric Solid-State Supercapacitors Based on NiO-Decorated Nanofiber-Based Composite Electrodes with Excellent Mechanical Flexibility and Cyclability vol.3, pp.3, 2018, https://doi.org/10.1021/acsaem.9b02073
  7. Carbon threads sweat-based supercapacitors for electronic textiles vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-64649-2