DOI QR코드

DOI QR Code

Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation

  • Dang, Nhat Minh (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • Received : 2017.09.12
  • Accepted : 2017.10.22
  • Published : 2018.03.31

Abstract

Advanced oxidation using UV radiation in the presence of $H_2O_2$ was applied for decolorization of liquid fertilizer and the resulting liquid fertilizer was utilized to the cultivation of microalga Chlorella vulgaris and biodiesel production. The growth of C. vulgaris was enhanced in decolorized medium. The biomass productivity of C. vulgaris in AOP-treated PAL1 reached 124 mg/L, which was 2.1 times higher than that in original PAL1, 58 mg/L/day. Cellular lipid accumulation was increased in decolorized medium (from 6 to 30%), because fast growing cells consumed nitrogren faster in decolorized medium and thus lipid synthesis was triggered in nitrogen-deficient environment.

Keywords

Acknowledgement

Grant : Development of Marine Microalgal Biofuel Production Technology

Supported by : Ministry of Oceans and Fisheries

References

  1. M.R. Tredic, Biofuels 1 (2010) 143. https://doi.org/10.4155/bfs.09.10
  2. R. Rawat, R. Kumar, T. Mutanda, F. Bux, Appl. Energy 88 (2011) 3411. https://doi.org/10.1016/j.apenergy.2010.11.025
  3. J.A. Lara-Gil, C. Senes-Guerrero, A. Pacheco, Algal Res. 17 (2016) 285. https://doi.org/10.1016/j.algal.2016.05.017
  4. X. Li, H. Xu, Q. Wu, Biotechnol. Bioeng. 98 (2007) 764. https://doi.org/10.1002/bit.21489
  5. M.K. Lam, K.T. Lee, Appl. Energy 94 (2012) 303. https://doi.org/10.1016/j.apenergy.2012.01.075
  6. A. Akyol, O.T. Can, E. Demirbas, M. Kobya, Sep. Purif. Technol. 112 (2013) 11. https://doi.org/10.1016/j.seppur.2013.03.036
  7. U. Younas, S. Iqbal, A. Saleem, M. Iqbal, A. Nazir, S. Noureen, K. Mehmood, N. Nisar, Acta Ecol. Sin. 37 (2017) 236. https://doi.org/10.1016/j.chnaes.2017.02.002
  8. A. Aleboyeh, Y. Moussa, H. Aleboyed, Dyes Pigm. 66 (2005) 129. https://doi.org/10.1016/j.dyepig.2004.09.008
  9. S.G. Schrank, J.N.R. Santos, D.S. Souza, J. Photochem. Photobiol. A 186 (2007) 125. https://doi.org/10.1016/j.jphotochem.2006.08.001
  10. American Public Health Association, Standard methods for the examination of water and wastewater, 19th American Public Health Association, Washington DC, USA, 1995.
  11. E.G. Bligh, W.J. Dyer, Can. J. Biochem. Physiol. 37 (1959) 911. https://doi.org/10.1139/y59-099
  12. S.V. Wychen, L.M.L. Lauren, Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterfication, Laboratory analytical procedure, NREL, U.S.A, 2013.
  13. C.G. Namboodri, W.K. Walsh, Am. Dyestuff Rep. (1996) 15.
  14. C.S. Zalazar, M.D. Labas, R.J. Brandio, A.E. Cassano, Chemosphere 66 (2007) 808. https://doi.org/10.1016/j.chemosphere.2006.06.044
  15. H. Lee, M. Shoda, J. Hazard. Mater. 153 (2008) 1314. https://doi.org/10.1016/j.jhazmat.2007.09.097
  16. A. Asghar, A.A.A. Raman, W.M.A.W. Daud, J. Clean. Prod. 87 (2015) 826. https://doi.org/10.1016/j.jclepro.2014.09.010
  17. H.Y. Shu, M.C. Chang, W.P. Hsieh, J. Hazard. Mater. 128 (2006) 60. https://doi.org/10.1016/j.jhazmat.2005.07.030
  18. E. Kusvuran, O. Gulnaz, A. Samil, O. Yildirim, J. Hazard. Mater. 186 (2011) 133. https://doi.org/10.1016/j.jhazmat.2010.10.100
  19. M.A. Hassaan, A.E. Nemr, F.F. Madkour, Egypt. J. Aquat. Res. 43 (2016) 11.
  20. M. Muruganandham, M. Swaminathan, Dyes Pigm. 62 (2004) 269. https://doi.org/10.1016/j.dyepig.2003.12.006
  21. J.C. Lou, S.S. Lee, J. Hazard. Mater. 12 (1995) 185.
  22. A. Aleboyeh, M.B. Kasiru, H. Aleboyeh, Bioresour. Technol. 113 (2012) 426.
  23. N. Zhou, Y. Gao, W. Deng, W. Chu, S. Rong, S. Zhou, J. Hazard. Mater. 231-232 (2012) 43. https://doi.org/10.1016/j.jhazmat.2012.06.032
  24. T. Cai, S.Y. Park, Y. Li, Renew. Sustain. Energy Rev. 19 (2013) 360. https://doi.org/10.1016/j.rser.2012.11.030
  25. Q. Hu, Environmental effects on cell composition, in: A. Richmond, Q. Hu (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed., Wiley Blackwell, UK, 2013 p. 114.
  26. A.L. Stephenson, J.S. Dennis, C.J. Howe, S.A. Scott, A.G. Smith, Biofuels 1 (2010) 47. https://doi.org/10.4155/bfs.09.1
  27. Y.-H. Chen, Y.H. Walker, Biotechnol. Lett. 33 (2011) 1973. https://doi.org/10.1007/s10529-011-0672-y
  28. G. Kim, G. Mujtaba, M. Rizwan, K. Lee, Appl. Chem. Eng. 25 (2014) 553. https://doi.org/10.14478/ace.2014.1125
  29. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, A. Darzins, Plant J. 54 (2008) 621. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  30. A.A. Abdelmalik, A.P. Abbott, J.C. Fothergill, S. Dodda, R.C. Harris, Ind. Crops Prod. 33 (2011) 532. https://doi.org/10.1016/j.indcrop.2010.11.019
  31. M.J. Ramos, C.M. Fernandez, A. Casas, L. Rodriguez, A. Perez, Bioresour. Technol. 100 (2009) 261. https://doi.org/10.1016/j.biortech.2008.06.039

Cited by

  1. Utilization of Organic Liquid Fertilizer in Microalgae Cultivation for Biodiesel Production vol.23, pp.4, 2018, https://doi.org/10.1007/s12257-018-0081-3
  2. Effect of trophic conditions on microalga growth, nutrient removal, algal organic matter, and energy storage products in Scenedesmus (Acutodesmus) obliquus KGE-17 cultivation vol.42, pp.7, 2018, https://doi.org/10.1007/s00449-019-02120-x
  3. Decolourization of chicken compost derived liquid fertilizer via synergic ultraviolet (UV) irradiation and ozonation for enhanced microalgae cultivation vol.287, pp.None, 2018, https://doi.org/10.1051/e3sconf/202128704013
  4. Coupling cold plasma and membrane photobioreactor for enhanced fouling control during livestock excreta treatment vol.265, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2020.129031