DOI QR코드

DOI QR Code

Simple modification with amine- and hydroxyl- group rich biopolymer on ordered mesoporous carbon/sulfur composite for lithium-sulfur batteries

  • Lim, Won-Gwang (Department of Chemical Engineering, Pohang University of Science & Technology) ;
  • Jo, Changshin (Department of Chemical Engineering, Pohang University of Science & Technology) ;
  • Lee, Jinwoo (Department of Chemical Engineering, Pohang University of Science & Technology) ;
  • Hwang, Dong Soo (School of Environmental Science and Engineering and Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology)
  • Received : 2017.08.21
  • Accepted : 2017.10.25
  • Published : 2018.02.28

Abstract

Lithium-sulfur (Li-S) batteries are promising next generation batteries, and numerous porous carbons have been considered as the support materials for sulfur to address dissolution of poylsulfide. However, the weak binding energy of carbon with sulfur species causes poor cycle performance. We report that amine- and hydroxyl-rich biopolymer (chitosan) coated on ordered mesoporous carbon (OMC) can effectively capture soluble polysulfide. The strong binding of chitosan's amine- and hydroxyl-group with the polysulfides prevents dissolution of soluble intermediates and assists dispersion of insulating final products. In addition, as chitosan is insoluble in the electrolyte, chitosan coating on the cathode sustainably increases cycle stability and coulombic efficiency of Li-S batteries. Initial coulombic efficiency of chitosan modified OMC/S composite was 81.7% and specific capacities of chitosan modified OMC/S composite were 32.4% and 51.6% higher than those of bare OMC/S composite at $100^{th}$ and $140^{th}$ cycle, respectively.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea, Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. Van Schalkwijk, Nat. Mater., 4, 366 (2005). https://doi.org/10.1038/nmat1368
  2. H. Park, D. H. Yeom, J. Kim and J. K. Lee, Korean J. Chem. Eng., 32, 178 (2015). https://doi.org/10.1007/s11814-014-0265-2
  3. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  4. N. Venugopal, W.-S. Kim and T. Yu, Korean J. Chem. Eng., 33, 1500 (2016). https://doi.org/10.1007/s11814-015-0274-9
  5. A.R. Armstrong and P.G. Bruce, Nature, 381, 499 (1996). https://doi.org/10.1038/381499a0
  6. J. Cho, Y. J. Kim and B. Park, Chem. Mater., 12, 3788 (2000). https://doi.org/10.1021/cm000511k
  7. F. Jiao, K. M. Shaju and P.G. Bruce, Angew. Chem. Int. Ed., 44, 6550 (2005). https://doi.org/10.1002/anie.200501663
  8. K.-M. Kang, H.-W. Kim and H.-Y. Kwak, Korean J. Chem. Eng., 33, 688 (2016). https://doi.org/10.1007/s11814-015-0178-8
  9. K. Mizushima, P. Jones, P. Wiseman and J. Goodenough, Mater. Res. Bull., 15, 783 (1980). https://doi.org/10.1016/0025-5408(80)90012-4
  10. D.-L. Vu and J.-w. Lee, Korean J. Chem. Eng., 33, 514 (2016). https://doi.org/10.1007/s11814-015-0154-3
  11. G. Xu, B. Ding, J. Pan, P. Nie, L. Shen and X. Zhang, J. Mater. Chem. A, 2, 12662 (2014). https://doi.org/10.1039/C4TA02097A
  12. P.G. Bruce, S.A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 11, 19 (2012). https://doi.org/10.1038/nmat3191
  13. S.-H. Yeon, W. Ahn, K.-H. Shin, C.-S. Jin, K.-N. Jung, J.-D. Jeon, S. Lim and Y. Kim, Korean J. Chem. Eng., 32, 867 (2015). https://doi.org/10.1007/s11814-014-0278-x
  14. A. F. Hofmann, D.N. Fronczek and W.G. Bessler, J. Power Sources, 259, 300 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.082
  15. X. Ji and L. F. Nazar, J. Mater. Chem., 20, 9821 (2010). https://doi.org/10.1039/b925751a
  16. A. Manthiram, Y. Fu and Y.-S. Su, Acc. Chem. Res., 46, 1125 (2012).
  17. Y.X. Yin, S. Xin, Y. G. Guo and L. J. Wan, Angew. Chem. Int. Ed., 52, 13186 (2013). https://doi.org/10.1002/anie.201304762
  18. J. Lee, J. Kim and T. Hyeon, Adv. Mater., 18, 2073 (2006). https://doi.org/10.1002/adma.200501576
  19. Y. Ye, C. Jo, I. Jeong and J. Lee, Nanoscale, 5, 4584 (2013). https://doi.org/10.1039/c3nr00176h
  20. X. Ji, K.T. Lee and L. F. Nazar, Nat. Mater., 8, 500 (2009). https://doi.org/10.1038/nmat2460
  21. X. Li, Y. Cao, W. Qi, L.V. Saraf, J. Xiao, Z. Nie, J. Mietek, J.-G. Zhang, B. Schwenzer and J. Liu, J. Mater. Chem., 21, 16603 (2011). https://doi.org/10.1039/c1jm12979a
  22. J. r.G. Werner, S. S. Johnson, V. Vijay and U. Wiesner, Chem. Mater., 27, 3349 (2015). https://doi.org/10.1021/acs.chemmater.5b00500
  23. N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona and L.A. Archer, Angew. Chem., 123, 6026 (2011). https://doi.org/10.1002/ange.201100637
  24. W. Zhou, X. Xiao, M. Cai and L. Yang, Nano Lett., 14, 5250 (2014). https://doi.org/10.1021/nl502238b
  25. G. He, X. Ji and L. Nazar, Energy Environ. Sci., 4, 2878 (2011). https://doi.org/10.1039/c1ee01219c
  26. S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo and L.-J. Wan, J. Am. Chem. Soc., 134, 18510 (2012). https://doi.org/10.1021/ja308170k
  27. Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney and Y. Cui, J. Am. Chem. Soc., 134, 15387 (2012). https://doi.org/10.1021/ja3052206
  28. J.H. Kim, T. Kim, Y.C. Jeong, K. Lee, K.T. Park, S. J. Yang and C.R. Park, Adv. Energy Mater., 5, 1500268 (2015). https://doi.org/10.1002/aenm.201500268
  29. G.C. Li, G.R. Li, S.H. Ye and X. P. Gao, Adv. Energy Mater., 2, 1238 (2012). https://doi.org/10.1002/aenm.201200017
  30. L. Ma, H. L. Zhuang, S. Wei, K. E. Hendrickson, M. S. Kim, G. Cohn, R. G. Hennig and L. A. Archer, ACS Nano, 10, 1050 (2015).
  31. Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao and Y. Cui, ACS Nano, 5, 9187 (2011). https://doi.org/10.1021/nn203436j
  32. G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z.W. Seh and Y. Cui, Nano Lett., 13, 1265 (2013). https://doi.org/10.1021/nl304795g
  33. G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I.R. Gentle, F. Li and H.-M. Cheng, ACS Nano, 7, 5367 (2013). https://doi.org/10.1021/nn401228t
  34. C. Zu and A. Manthiram, Adv. Energy Mater., 3, 1008 (2013). https://doi.org/10.1002/aenm.201201080
  35. E. Khor and L.Y. Lim, Biomaterials, 24, 2339 (2003). https://doi.org/10.1016/S0142-9612(03)00026-7
  36. D. Klemm, B. Heublein, H. P. Fink and A. Bohn, Angew. Chem. Int. Ed., 44, 3358 (2005). https://doi.org/10.1002/anie.200460587
  37. E. Raymundo-Pinero, F. Leroux and F. Beguin, Adv. Mater., 18, 1877 (2006). https://doi.org/10.1002/adma.200501905
  38. J. Fanous, M. Wegner, J. Grimminger, A. n. Andresen and M.R. Buchmeiser, Chem. Mater., 23, 5024 (2011). https://doi.org/10.1021/cm202467u
  39. Y. Fu and A. Manthiram, Chem. Mater., 24, 3081 (2012). https://doi.org/10.1021/cm301661y
  40. L. Wang, X. He, J. Li, J. Gao, J. Guo, C. Jiang and C. Wan, J. Mater. Chem., 22, 22077 (2012). https://doi.org/10.1039/c2jm30632h
  41. F. Wu, J. Chen, L. Li, T. Zhao and R. Chen, J. Phys. Chem. C, 115, 24411 (2011). https://doi.org/10.1021/jp207893d
  42. W. Zhou, Y. Yu, H. Chen, F. J. DiSalvo and H. c.D. Abruna, J. Am. Chem. Soc., 135, 16736 (2013). https://doi.org/10.1021/ja409508q
  43. D.W. Lee, C. Lim, J. N. Israelachvili and D. S. Hwang, Langmuir, 29, 14222 (2013). https://doi.org/10.1021/la403124u
  44. C. Lim, D.W. Lee, J.N. Israelachvili, Y. Jho and D. S. Hwang, Carbohydr. Polym., 117, 887 (2015). https://doi.org/10.1016/j.carbpol.2014.10.033
  45. C. Zu and A. Manthiram, Adv. Energy Mater., 3, 1008 (2013). https://doi.org/10.1002/aenm.201201080
  46. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 122, 10712 (2000). https://doi.org/10.1021/ja002261e
  47. X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss and L. F. Nazar, Nat. Commun., 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
  48. S. S. Zhang, Electrochim. Acta, 70, 344 (2012). https://doi.org/10.1016/j.electacta.2012.03.081
  49. C. Wang, W. Wan, J.-T. Chen, H.-H. Zhou, X.-X. Zhang, L.-X. Yuan and Y.-H. Huang, J. Mater. Chem. A, 1, 1716 (2013). https://doi.org/10.1039/C2TA00915C
  50. H. J. Kim, I.-S. Bae, S.-J. Cho, J.-H. Boo, B.-C. Lee, J. Heo, I. Chung and B. Hong, Nanoscale Res. Lett., 7, 1 (2012). https://doi.org/10.1186/1556-276X-7-1
  51. Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart, K. C. Tam and L. F. Nazar, Adv. Mater., 27, 6021 (2015). https://doi.org/10.1002/adma.201502467
  52. Y. Fu, Y.-S. Su and A. Manthiram, ACS Appl. Mater. Interfaces, 4, 6046 (2012). https://doi.org/10.1021/am301688h

Cited by

  1. Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium-Sulfur Batteries vol.12, pp.6, 2018, https://doi.org/10.1021/acsnano.8b02258
  2. Approaching Ultrastable High‐Rate Li–S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation vol.31, pp.3, 2019, https://doi.org/10.1002/adma.201806547
  3. 수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과 vol.57, pp.6, 2018, https://doi.org/10.9713/kcer.2019.57.6.847
  4. A small-strain niobium nitride anode with ordered mesopores for ultra-stable potassium-ion batteries vol.8, pp.6, 2018, https://doi.org/10.1039/c9ta11663j
  5. Let It Catch: A Short‐Branched Protein for Efficiently Capturing Polysulfides in Lithium-Sulfur Batteries vol.10, pp.9, 2018, https://doi.org/10.1002/aenm.201903642
  6. Simultaneous Suppression of Shuttle Effect and Lithium Dendrite Growth by Lightweight Bifunctional Separator for Li-S Batteries vol.3, pp.3, 2020, https://doi.org/10.1021/acsaem.9b02350
  7. Neutral pH aqueous redox flow batteries using an anthraquinone-ferrocyanide redox couple vol.8, pp.17, 2020, https://doi.org/10.1039/d0tc00640h
  8. Mesoporous carbon host material for stable lithium metal anode vol.12, pp.22, 2018, https://doi.org/10.1039/d0nr02258f
  9. Solid-state conversion of metal oleate precursors for the preparation of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries vol.37, pp.7, 2020, https://doi.org/10.1007/s11814-020-0537-y
  10. Biopolymer-Based Electrolytes for Dye-Sensitized Solar Cells: A Critical Review vol.34, pp.12, 2018, https://doi.org/10.1021/acs.energyfuels.0c03396
  11. Protein‐Engineered Functional Materials for Bioelectronics vol.31, pp.4, 2018, https://doi.org/10.1002/adfm.202006744
  12. Recent advances in the synthesis of mesoporous materials and their application to lithium-ion batteries and hybrid supercapacitors vol.38, pp.2, 2018, https://doi.org/10.1007/s11814-020-0693-0
  13. Gifts from Nature: Bio‐Inspired Materials for Rechargeable Secondary Batteries vol.33, pp.37, 2018, https://doi.org/10.1002/adma.202006019
  14. V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium–sulfur batteries vol.431, pp.p2, 2018, https://doi.org/10.1016/j.cej.2021.134205