DOI QR코드

DOI QR Code

Synthesis and characterization of low-cost ceramic membranes from fly ash and kaolin for humic acid separation

  • Received : 2017.08.15
  • Accepted : 2017.11.20
  • Published : 2018.03.31

Abstract

Ceramic microfiltration membranes were prepared using five different compositions formulated with different amounts of fly ash and kaolin and sintered at $900^{\circ}C$. The SEM analysis evidenced a large number of small pores on the surface of kaolin-rich membranes. The M4 membrane prepared using 25% fly ash and 50% kaolin was found to be optimum as it had a good combination of pore size ($0.885{\mu}m$), porosity (42.7%), mechanical strength (43.6 MPa), and chemical stability (<3% weight loss in acid and 0.02% in base), and this membrane was successfully applied in separation of humic acid from water. The permeate flux data fitted very closely with cake-filtration model, indicating the formation of a cake layer on membrane surface. Membrane fouling was found to be reversible and easily negated by cleaning and backflushing. The regenerated membrane showed better rejection of humic acid than fresh membrane with a flux recovery of above 80%.

Keywords

References

  1. L. Wang, C. Han, M.N. Nadagouda and D.D. Dionysiou, J. Hazard. Mater., 313, 283 (2016). https://doi.org/10.1016/j.jhazmat.2016.03.070
  2. S. Javdaneh, M.R. Mehrnia, and M. Homayoonfal, Korean J. Chem. Eng., 33, 3184 (2016). https://doi.org/10.1007/s11814-016-0178-3
  3. F. S. Dehkordi, M. Pakizeh and M. Namvar-Mahboub, Appl. Clay Sci., 105, 178 (2015).
  4. A. L. Ahmad, A. A. Abdulkarim, S. Ismail and O.B. Seng, Korean J. Chem. Eng., 33, 997 (2016). https://doi.org/10.1007/s11814-015-0221-9
  5. K. Szymanski, A.W. Morawski and S. Mozia, Chem. Eng. J., 305, 19 (2016). https://doi.org/10.1016/j.cej.2015.10.024
  6. Y. Zou, H. Jiang, H. Gao and R. Chen, Korean J. Chem. Eng., 33, 2453 (2016). https://doi.org/10.1007/s11814-016-0090-x
  7. S. Jana, A. Saikia, M.K. Purkait and K. Mohanty, Chem. Eng. J., 170, 209 (2011). https://doi.org/10.1016/j.cej.2011.03.056
  8. B. Das, B. Chakrabarty and P. Barkakati, Korean J. Chem. Eng., 34, 2559 (2017). https://doi.org/10.1007/s11814-017-0185-z
  9. C.M. Kaniganti, S. Emani, P. Thorat and R. Uppaluri, Sep. Sci. Technol., 50, 121 (2015). https://doi.org/10.1080/01496395.2014.949772
  10. B.K. Nandi, R. Uppaluri and M.K. Purkait, Appl. Clay Sci., 42, 102 (2008). https://doi.org/10.1016/j.clay.2007.12.001
  11. B.K. Nandi, B. Das, R. Uppaluri and M.K. Purkait, J. Food Eng., 95, 597 (2009). https://doi.org/10.1016/j.jfoodeng.2009.06.024
  12. S. Emani, R. Uppaluri and M.K. Purkait, Desalination, 341, 61 (2014). https://doi.org/10.1016/j.desal.2014.02.030
  13. B.K. Nandi, R. Uppaluri and M.K. Purkait, Sep. Sci. Technol., 44, 2840 (2009). https://doi.org/10.1080/01496390903136004
  14. H. Kaur, V. K. Bulasara and R. K. Gupta, J. Ind. Eng. Chem., 44, 185 (2016). https://doi.org/10.1016/j.jiec.2016.08.026
  15. H. Kaur, V. K. Bulasara and R. K. Gupta, Desalin. Water Treat., 53, 1204 (2016).
  16. G. Singh and V. K. Bulasara, Desalin. Water Treat., 53, 1204 (2013).
  17. S. Jana, M. K. Purkait and K. Mohanty, Sep. Sci. Technol., 46, 33 (2011).
  18. J. S. Kamyotra, Pollution control acts, rules and notifications issued thereunder, 6th Ed., Central Pollution Control Board, India (2010).
  19. N. Shamsuddin, D. B. Das and V.M. Starov, Chem. Eng. J., 276, 331 (2015). https://doi.org/10.1016/j.cej.2015.04.075
  20. A. L. Ahmad, A.A. Abdulkarim, S. Ismail and B.S. Ooi, Sep. Sci. Technol., 54, 3257 (2015).
  21. A. L. Zydney, J. Membr. Sci., 130, 275 (1997). https://doi.org/10.1016/S0376-7388(97)00006-9

Cited by

  1. Acid-catalyzed regeneration of fatty-acid-adsorbed γ-alumina via transesterification with methanol vol.35, pp.10, 2018, https://doi.org/10.1007/s11814-018-0127-4
  2. Performance of a new ceramic microfiltration membrane based on kaolin in textile industry wastewater treatment vol.206, pp.2, 2018, https://doi.org/10.1080/00986445.2018.1482281
  3. Preparation and characterization of low cost flat ceramic membranes from easily available potters’ clay for dye separation vol.42, pp.3, 2018, https://doi.org/10.1007/s12034-019-1767-7
  4. Materials and Applications for Low-Cost Ceramic Membranes vol.9, pp.9, 2019, https://doi.org/10.3390/membranes9090105
  5. Synthesis of ZrO2 Nanorods and Their Application as Membrane Materials vol.56, pp.6, 2019, https://doi.org/10.4191/kcers.2019.56.6.06
  6. Synthesis of CoZnAl‐layered double hydroxide/graphene oxide nanocomposite for the removal of methylene blue: Kinetic, thermodynamic, and isotherm studies vol.39, pp.2, 2018, https://doi.org/10.1002/ep.13316
  7. Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review vol.4, pp.None, 2018, https://doi.org/10.1016/j.cscee.2021.100149
  8. Process intensification through waste fly ash conversion and application as ceramic membranes: A review vol.808, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2021.151968