DOI QR코드

DOI QR Code

Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation

  • Pirzadeh, Kasra (Chemical Engineering Department, Babol Noshirvani University of Technology) ;
  • Ghoreyshi, Ali Asghar (Chemical Engineering Department, Babol Noshirvani University of Technology) ;
  • Rahimnejad, Mostafa (Chemical Engineering Department, Babol Noshirvani University of Technology) ;
  • Mohammadi, Maedeh (Chemical Engineering Department, Babol Noshirvani University of Technology)
  • Received : 2017.09.27
  • Accepted : 2017.12.04
  • Published : 2018.04.30

Abstract

The electrochemical route is a promising and environmentally friendly technique for fabrication of metal organic frameworks (MOFs) due to mild synthesis condition, short time for crystal growth and ease of scale up. A microstructure $Cu_3(BTC)_2$ MOF was synthesized through electrochemical path and successfully employed for $CO_2$ and $CH_4$ adsorption. Characterization and structural investigation of the MOF was carried out by XRD, FE-SEM, TGA, FTIR and BET analyses. The highest amount of carbon dioxide and methane sorption was 26.89 and 6.63 wt%, respectively, at 298 K. The heat of adsorption for $CO_2$ decreased monotonically, while an opposite trend was observed for $CH_4$. The results also revealed that the selectivity of the developed MOF towards $CO_2$ over $CH_4$ enhanced with increase of pressure and composition of carbon dioxide component as predicted by the ideal adsorption solution theory (IAST). The regeneration of as-synthesized MOF was also studied in six consecutive cycles and no considerable reduction in $CO_2$ adsorption capacity was observed.

Keywords

References

  1. H.R. Abid, Z. H. Rada, J. Shang and S. Wang, Polyhedron (2016).
  2. C. Stewart and M.-A. Hessami, Energy Convers. Manage., 46, 403 (2005). https://doi.org/10.1016/j.enconman.2004.03.009
  3. A.K. Adhikari and K.-S. Lin, Chem. Eng. J., 284, 1348 (2016). https://doi.org/10.1016/j.cej.2015.09.086
  4. H. C. Yoon, P. B. S. Rallapalli, S. S. Han, H.T. Beum, T. S. Jung, D.W. Cho, M. Ko and J.-N. Kim, Korean J. Chem. Eng., 32, 2501 (2015). https://doi.org/10.1007/s11814-015-0088-9
  5. Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 43, 5657 (2014). https://doi.org/10.1039/C4CS00032C
  6. M. G. Waller, E.D. Williams, S.W. Matteson and T. A. Trabold, Appl. Energy, 127, 55 (2014). https://doi.org/10.1016/j.apenergy.2014.03.088
  7. S. Choi, J. H. Drese and C.W. Jones, ChemSusChem, 2, 796 (2009). https://doi.org/10.1002/cssc.200900036
  8. X. Wang, L. Chen and Q. Guo, Chem. Eng. J., 260, 573 (2015). https://doi.org/10.1016/j.cej.2014.08.107
  9. Y. Li, H. Yi, X. Tang, F. Li and Q. Yuan, Chem. Eng. J., 229, 50 (2013). https://doi.org/10.1016/j.cej.2013.05.101
  10. L. Liu, D. Nicholson and S. K. Bhatia, J. Phys. Chem. C, 119, 407 (2014).
  11. H. Yi, F. Li, P. Ning, X. Tang, J. Peng, Y. Li and H. Deng, Chem. Eng. J., 215, 635 (2013).
  12. C. Shen, C. A. Grande, P. Li, J. Yu and A. E. Rodrigues, Chem. Eng. J., 160, 398 (2010). https://doi.org/10.1016/j.cej.2009.12.005
  13. F. Raganati, V. Gargiulo, P. Ammendola, M. Alfe and R. Chirone, Chem. Eng. J., 239, 75 (2014). https://doi.org/10.1016/j.cej.2013.11.005
  14. K. Munusamy, G. Sethia, D.V. Patil, P. B. S. Rallapalli, R. S. Somani and H. C. Bajaj, Chem. Eng. J., 195, 359 (2012).
  15. C. Janiak and J.K. Vieth, New J. Chem., 34, 2366 (2010). https://doi.org/10.1039/c0nj00275e
  16. A. Martinez Joaristi, J. Juan-Alcaniz, P. Serra-Crespo, F. Kapteijn and J. Gascon, Cryst. Growth Des., 12, 3489 (2012). https://doi.org/10.1021/cg300552w
  17. J.R. Long and O.M. Yaghi, Chem. Soc. Rev., 38, 1213 (2009). https://doi.org/10.1039/b903811f
  18. H. Al-Kutubi, J. Gascon, E. J. Sudholter and L. Rassaei, ChemElec-troChem, 2, 462 (2015). https://doi.org/10.1002/celc.201402429
  19. D.-W. Jung, D.-A. Yang, J. Kim, J. Kim and W.-S. Ahn, Dalton Trans., 39, 2883 (2010). https://doi.org/10.1039/b925088c
  20. Z. Ni and R. I. Masel, J. Am Chem. Soc., 128, 12394 (2006). https://doi.org/10.1021/ja0635231
  21. S. Khazalpour, V. Safarifard, A. Morsali and D. Nematollahi, RSC Adv., 5, 36547 (2015). https://doi.org/10.1039/C5RA04446D
  22. R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels and D.E. De Vos, Chem. Mater., 21, 2580 (2009). https://doi.org/10.1021/cm900069f
  23. A.U. Czaja, N. Trukhan and U. Muller, Chem. Soc. Rev., 38, 1284 (2009). https://doi.org/10.1039/b804680h
  24. S. S.-Y. Chui, S. M.-F. Lo, J. P. Charmant, A. G. Orpen and I.D. Williams, Science, 283, 1148 (1999). https://doi.org/10.1126/science.283.5405.1148
  25. K. Schlichte, T. Kratzke and S. Kaskel, Micropor. Mesopor. Mater., 73, 81 (2004). https://doi.org/10.1016/j.micromeso.2003.12.027
  26. M. Gaab, N. Trukhan, S. Maurer, R. Gummaraju and U. Muller, Micropor. Mesopor. Mater., 157, 131 (2012). https://doi.org/10.1016/j.micromeso.2011.08.016
  27. P. Silva, S.M. Vilela, J.P. Tome and F.A.A. Paz, Chem. Soc. Rev., 44, 6774 (2015). https://doi.org/10.1039/C5CS00307E
  28. A. Grondein and D. Belanger, Fuel, 90, 2684 (2011). https://doi.org/10.1016/j.fuel.2011.03.019
  29. S. Khoshhal, A. A. Ghoreyshi, M. Jahanshahi and M. Mohammadi, RSC Adv., 5, 24758 (2015). https://doi.org/10.1039/C5RA01890K
  30. B. Sun, S. Kayal and A. Chakraborty, Energy, 76, 419 (2014). https://doi.org/10.1016/j.energy.2014.08.033
  31. T.M. Letcher, Thermodynamics, solubility and environmental issues, Elsevier (2007).
  32. B. Wu, Y. Zhang and H. Wang, J. Phys. Chem. B, 113, 12332 (2009). https://doi.org/10.1021/jp905252j
  33. W. Caminati, S. Melandri, A. Maris and P. Ottaviani, Angew. Chem. Int. Ed., 45, 2438 (2006). https://doi.org/10.1002/anie.200504486
  34. M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst and A. Wagener, Langmuir, 24, 8634 (2008). https://doi.org/10.1021/la8008656
  35. J. Li, J. Yang, L. Li and J. Li, J. Energy Chem., 23, 453 (2014). https://doi.org/10.1016/S2095-4956(14)60171-6
  36. F. Martinez, R. Sanz, G. Orcajo, D. Briones and V. Yanguez, Chem. Eng. Sci., 142, 55 (2016). https://doi.org/10.1016/j.ces.2015.11.033
  37. S. Bhadauria, A. Nanoti, S. Dasgupta, S. Divekar, P. Gupta and R. Chauhan, RSC Adv., 6, 93003 (2016). https://doi.org/10.1039/C6RA10465G
  38. S. Salehi and M. Anbia, Energy Fuels, 31, 5376 (2017). https://doi.org/10.1021/acs.energyfuels.6b03347
  39. N. Al-Janabi, P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo, F. Siperstein and X. Fan, Chem. Eng. J., 281, 669 (2015). https://doi.org/10.1016/j.cej.2015.07.020
  40. M. Schlesinger, S. Schulze, M. Hietschold and M. Mehring, Micropor. Mesopor. Mater., 132, 121 (2010). https://doi.org/10.1016/j.micromeso.2010.02.008
  41. R. S. Kumar, S. S. Kumar and M.A. Kulandainathan, Micropor. Mesopor. Mater., 168, 57 (2013). https://doi.org/10.1016/j.micromeso.2012.09.028
  42. I. Ardelean and S. Cora, J. Mater. Sci.: Mater. Electronics, 19, 584 (2008). https://doi.org/10.1007/s10854-007-9393-3
  43. F. Banisheykholeslami, A. A. Ghoreyshi, M. Mohammadi and K. Pirzadeh, CLEAN-Soil, Air, Water, 43, 1084 (2015). https://doi.org/10.1002/clen.201400112
  44. H. Wu, J. M. Simmons, G. Srinivas, W. Zhou and T. Yildirim, J. Phys. Chem. Lett., 1, 1946 (2010). https://doi.org/10.1021/jz100558r
  45. G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes and M. Krimissa, Appl. Geochem., 22, 249 (2007). https://doi.org/10.1016/j.apgeochem.2006.09.010
  46. C. Zhu, Z. Zhang, B. Wang, Y. Chen, H. Wang, X. Chen, H. Zhang, N. Sun, W. Wei and Y. Sun, Micropor. Mesopor. Mater., 226, 476 (2016). https://doi.org/10.1016/j.micromeso.2016.02.029
  47. Z. H. Rada, H.R. Abid, J. Shang, Y. He, P. Webley, S. Liu, H. Sun and S. Wang, Fuel, 160, 318 (2015). https://doi.org/10.1016/j.fuel.2015.07.088
  48. H.R. Abid, Z. H. Rada, J. Shang and S. Wang, Polyhedron, 120, 103 (2016). https://doi.org/10.1016/j.poly.2016.06.034
  49. J. Du and G. Zou, Inorg. Chem. Commun., 69, 20 (2016). https://doi.org/10.1016/j.inoche.2016.04.015
  50. H. Qiu, L. Lv, B.-c. Pan, Q.-j. Zhang, W.-m. Zhang and Q.-x. Zhang, J. Zhejiang University-Science A, 10, 716 (2009). https://doi.org/10.1631/jzus.A0820524
  51. N. Lazaridis and D. Asouhidou, Water Res., 37, 2875 (2003). https://doi.org/10.1016/S0043-1354(03)00119-2
  52. E. Mehrvarz, A.A. Ghoreyshi and M. Jahanshahi, Front. Chem. Sci. Eng., 11, 252 (2017). https://doi.org/10.1007/s11705-017-1630-6
  53. I. Prasetyo and D. Do, Chem. Eng. Sci., 53, 3459 (1998). https://doi.org/10.1016/S0009-2509(98)00146-8
  54. S. Chowdhury and R. Balasubramanian, J. $CO_2$ Util., 13, 50 (2016). https://doi.org/10.1016/j.jcou.2015.12.001
  55. Z. Bao, L. Yu, Q. Ren, X. Lu and S. Deng, J. Colloid Interface Sci., 353, 549 (2011). https://doi.org/10.1016/j.jcis.2010.09.065
  56. H. Zhimin, Y. Guocong and D. Barba, J. Chem. Ind. Eng. (China), 44, 143 (1993).
  57. A. Myers and J. M. Prausnitz, AIChE J., 11, 121 (1965). https://doi.org/10.1002/aic.690110125
  58. Z. Zhang, S. Xian, Q. Xia, H. Wang, Z. Li and J. Li, AIChE J., 59, 2195 (2013). https://doi.org/10.1002/aic.13970
  59. P. Mishra, S. Mekala, F. Dreisbach, B. Mandal and S. Gumma, Sep. Purif. Technol., 94, 124 (2012). https://doi.org/10.1016/j.seppur.2011.09.041

Cited by

  1. Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane vol.21, pp.4, 2018, https://doi.org/10.1088/2058-6272/aaf9d2
  2. Surface-enhanced infrared detection of benzene in air using a porous metal-organic-frameworks film vol.36, pp.6, 2018, https://doi.org/10.1007/s11814-018-0231-0
  3. The Origin of p-Xylene Selectivity in a DABCO Pillar-Layered Metal-Organic Framework: A Combined Experimental and Computational Investigation vol.11, pp.34, 2018, https://doi.org/10.1021/acsami.9b11343
  4. Facile Synthesis of UiO-66(Zr) Using a Microwave-Assisted Continuous Tubular Reactor and Its Application for Toluene Adsorption vol.19, pp.9, 2018, https://doi.org/10.1021/acs.cgd.9b00170
  5. Fast Cyclohexane Oxidation Under Mild Reaction Conditions Through a Controlled Creation of Redox‐Active Fe(II/III) Sites in a Metal−Organic Framework vol.11, pp.22, 2018, https://doi.org/10.1002/cctc.201901050
  6. CO2 and N2 adsorption and separation using aminated UiO-66 and Cu3(BTC)2: A comparative study vol.37, pp.3, 2020, https://doi.org/10.1007/s11814-019-0433-5
  7. Zn- and Cd-based coordination polymers with a novel anthracene dicarboxylate ligand for highly selective detection of hydrogen peroxide vol.49, pp.15, 2020, https://doi.org/10.1039/d0dt00333f
  8. Review on synthesis and application of MIL-53 vol.43, pp.p5, 2018, https://doi.org/10.1016/j.matpr.2021.02.179
  9. Efficient electrochemical synthesis of a manganese-based metal-organic framework for H2 and CO2 uptake vol.23, pp.3, 2018, https://doi.org/10.1039/d0gc03292a
  10. Amorphous mesoporous matrix from metal-organic framework UiO-66 template with strong nucleophile substitution vol.268, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2020.129155
  11. Microporous Mo-UiO-66 Metal-Organic Framework Nanoparticles as Gas Adsorbents vol.4, pp.5, 2018, https://doi.org/10.1021/acsanm.1c00444
  12. Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases vol.445, pp.None, 2021, https://doi.org/10.1016/j.ccr.2021.214073
  13. A Critical Review on Black Phosphorus‐Based Photocatalytic CO2 Reduction Application vol.17, pp.49, 2021, https://doi.org/10.1002/smll.202102155
  14. Opportunities and Challenges in Biomedical Applications of Metal-Organic Frameworks vol.31, pp.12, 2018, https://doi.org/10.1007/s10904-021-02118-7
  15. Recent innovations in synthesis/characterization of advanced nano-porous metal-organic frameworks (MOFs); current/future trends with a focus on the smart anti-corrosion features vol.276, pp.None, 2022, https://doi.org/10.1016/j.matchemphys.2021.125420
  16. Metal organic frameworks for electrochemical sensor applications: A review vol.204, pp.no.pc, 2022, https://doi.org/10.1016/j.envres.2021.112320