DOI QR코드

DOI QR Code

Effects of pH modulation on the concentrations of odorous compounds from pit slurry of a pig operation building

pH 조절이 돈사 피트 내 슬러리의 악취물질 농도에 미치는 효과

  • Hwang, Okhwa (National Institute of Animal Science, Rural Development Administration) ;
  • Park, Sungkwon (Department of Food Science and Biotechnology, Sejong University) ;
  • Jung, Minwoong (National Institute of Animal Science, Rural Development Administration) ;
  • Han, Deugwoo (National Institute of Animal Science, Rural Development Administration) ;
  • Nho, Whangook (Department of Swine and Poultry Science, Korea National College of Agriculture and Fisheries) ;
  • Cho, Sungback (Institute of Livestock Odor Control)
  • 황옥화 (농촌진흥청 국립축산과학원) ;
  • 박성권 (세종대학교 식품생명공학과) ;
  • 정민웅 (농촌진흥청 국립축산과학원) ;
  • 한덕우 (농촌진흥청 국립축산과학원) ;
  • 노환국 (국립한국농수산대학 중소가축학과) ;
  • 조성백 (축산냄새연구소)
  • Received : 2017.06.24
  • Accepted : 2017.09.19
  • Published : 2018.03.31

Abstract

In the present study, we evaluated the effect of pH modulation on concentrations of odorous compounds and pollutants in pit slurry from pig operation building. A slurry sample was taken from the pit of a pig operation building where 50 finishing pigs [(Landrase ${\times}$ Yorkshire) ${\times}$ Duroc] were kept. Three levels of pH (6, 8 and 10) were measured and adjusted daily during the incubation periods using chemical reagents of 1 N HCl or 3 N NaOH. Concentrations of odorous compounds and pollutants were analyzed from slurry incubated for 7 days. When these material concentrations were compared with the pH 8 slurry which was the pH of pit slurry, levels of short chain fatty acids, indoles and total organic carbon were reduced 7%, 68% and 2%, respectively, in the pH 6 treatment (P<0.05). Ammonium nitrogen, phenols and total nitrogen concentrations were lower by 31%, 18% and 17%, respectively, than with the pH 10 slurry (P<0.05). When the odor contribution in pH treatments was assessed according to the odor activity value, it was found to be 23% lower in the pH 6 treatment compared with pH 8. The pH modulation would affect odor emissions and microbial activity from pit slurry. Although not all odorous compounds showed the reduction effect with the same pH control, this study can be effectively used as base data when using additives for pH control.

Keywords

Acknowledgement

Grant : 돈사 내부용 냄새저감제의 최적 조합 구명

Supported by : 농촌진흥청

References

  1. Aarnink, A. J. A., Verstegen, M. W. A., 2007. Nutrition key factor to reduce environmental load from pig production. Livestock Science 109(1), 194-203. https://doi.org/10.1016/j.livsci.2007.01.112
  2. Alitalo, A., 2014. Combination of biological and physicchemical factors in the development of manure nutrient recovery and recycling-oriented technology. MIT Science 29. Doctor's Thesis, Faculty of Agriculture and Forestry of the University of Helsinki, Helsinki, Finland.
  3. Andersen, D. S., Harmon, J. D., Hoff, S. J., Rieck-Hinz, A., 2014. Air management practices assessment tool, Manure storage and handling-Acidification, Application: used to reduce ammonia and methane emissions from manure storages. [cited 2018 Mar]; http://www.agronext.iastate.edu/ampat/storagehandling/acidification/homepage.html.
  4. Canh, T. T., Sutton, A. L., Aarnink, A. J. A., Verstegen, M. W. A., Schrama, J. W., Bakker, G. C. M., 1998. Dietary carbohydrates alter the faecal composition and pH and ammonia emission from slurry of growing pigs. Journal of Animal Science 76(7), 1887-1895. https://doi.org/10.2527/1998.7671887x
  5. Conn, K. L., Topp, E., Lazarovits, G., 2007. Factors influencing the concentration of volatile fatty acids, ammonia and other nutrients in stored liquid pig manure. Journal of Environmental Quality 36(2), 440-447. https://doi.org/10.2134/jeq2006.0222
  6. Dai, X. R., Blanes-Vidal, V., 2013. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: Effect of pH, mixing and aeration. Journal of Environmental Management 115, 147-154.
  7. Derikx, P. J. L., Willers, H. C., ten Have, P. J. W., 1994. Effect of pH on the behavior of volatile compounds in organic manures during dry-matter determination. Bioresource Technology 49(1), 41-45. https://doi.org/10.1016/0960-8524(94)90171-6
  8. Duncan, D. B., 1955. Multiple range and multiple F tests. Biometrics 11, 1-42. https://doi.org/10.2307/3001478
  9. Duncan, S. H., Belenguer, A., Hotrop, G., Johnstone, A. M., Flint, H. J., Lobley, G. E., 2007. Reduced dietary intake of carbohydrates by obeses subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology 73(4), 1073-1078. https://doi.org/10.1128/AEM.02340-06
  10. Eriksen, J., Sorensen, P., Elsgaard, L., 2008. The fate of sulfate in acidified pig slurry during storage and following application to cropped soil. Journal of Environmental Quality 37(1), 280-286. https://doi.org/10.2134/jeq2007.0317
  11. Fangueiro, D., Hjorth, M., Gioelli, F., 2015. Acidification of animal slurry-a review. Journal of Environmental Management 149(1), 46-56.
  12. Harmon, J. D., Hoff, S. J., Rieck-Hinz, A., 2014. Air management practices assessment tool, Animal Housing-Dietary Manipulation, Application: used for building ventilation air and manure storage emission. [cited 2018 March]; http://www.agronext.iastate.edu/ampat/animalhousing/dietary/homepage.html.
  13. Hendriks, J. G. L., Vielink, M. G. M., 1997. Reducing ammonia emissions from pig houses by adding or producing organic acids in pig slurry, in Proceedings of the 1997 International Symposium in Ammonia and Odour Emissions from Animal Production, The Dutch Society of Agricultural Engineering, Netherlands, Vinkeloord, 493-501.
  14. Hwang, O. H., Lee, M. H., Kim, K. H., Han, D. W., Lee, S. R., Kwag, J. H., Cho, S. B., 2016. The effect of Chamaecyparis obtus extract on the concentrations of odorous compounds and odor activity value from air in swine feeding operation. Journal of Odor and Indoor Environment 15(4), 289-295. (in Korean with English abstract) https://doi.org/10.15250/joie.2016.15.4.289
  15. Iqbal, M. A., Kim, K. H., Szulejko, J. E., Cho, J. W., 2014. An assessment of the liquid-gas partitioning behavior of major wastewater odorants using two comparative experimental approaches: liquid sample-based vaporization vs. impinge-based dynamic headspace extraction into sorbent tubes. Analytical and Bioanalytical Chemistry 406(2), 643-655. https://doi.org/10.1007/s00216-013-7489-6
  16. Jensen, M. T., Cox, R. P., Jensen, B. B., 1995. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria. Applied and Environmental Microbiology 61(8), 3180-3184.
  17. Jo, S. H., Kim, K. H., Jeon, B. H., Lee, M. H., Kim, Y. H., Kim, B. W., Cho, S. B., Hwang, O. H., Bhattacharya, S. S., 2015. Odor characterization from barns and slurry treatment facilities at a commercial swine facility in South Korea. Atmospheric Environment 119, 339-347. https://doi.org/10.1016/j.atmosenv.2015.08.064
  18. Kai, P., Pedersen, P., Jensen, J. E., Hansen, M. N., Sommer, S. G., 2008. In a whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emissions. European Journal of Agronomy 28(2), 148-154. https://doi.org/10.1016/j.eja.2007.06.004
  19. Korean Statistics (KOSTAT), 2015. Korean statistical information.
  20. Le, P. D., Aarnink, A. J. A., Ogink, N. W. M., Becker, P. M., Verstegen, M. W. A., 2005. Odour from animal production facilities: its relationship to diet. Nutrition Research Reviews 18(1), 3-30. https://doi.org/10.1079/NRR200592
  21. Lee, M. H., Kim, K. H., Jeon, B. H., Jo, S. H., Kim, Y. H., Kim, B. W., Cho, S. B., Hwang, O. H., Battacharya, S. S., 2017. Effect of slurry treatment approaches on the reduction of major odorant emissions at a hog barn facility in South Korea. Environmental Technology 38(4), 506-516. https://doi.org/10.1080/09593330.2016.1199599
  22. Liu, J., Wang, B., Tai, C., Wu, L., Zhao, H., Guan, J., Chen, L., 2016. An effective method to detect volatile intermediates generated in the bioconversion of cool to methane by gas chromatography-mass spectrometry after In-Situ extraction using headspace solid phase micro extraction under strict anaerobic conditions. PLOS ONE 11(10), e0163949. https://doi.org/10.1371/journal.pone.0163949
  23. Lorimor, J. C., 1999. Ammonia losses from broadcast liquid manure. Swine Research Report 1998, 33.
  24. Maurer, D. L., Koziel, J. A., Bruning, K., Parker, D. B., 2017. Pilot-scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions. Atmospheric Environment 150, 313-321. https://doi.org/10.1016/j.atmosenv.2016.11.021
  25. McCrory, D. F., Hobbs, P. J., 2001. Additives to reduce ammonia and odor emissions from livestock wastes: a review. Journal of Environmental Quality 30(2), 345-355. https://doi.org/10.2134/jeq2001.302345x
  26. Nagata, Y., 2003. Odor intensity and odor threshold value. Journal of Japan Air Cleaning Association 41(2), 17-25.
  27. Oh, S. E., Kim, K. Y., 2016. On-site evaluation of reduction effect of odorous compounds emitted from pig building by air cleaner operation. Journal of Odor and Indoor Environment 15(1), 1-5. (in Korean with English abstract) https://doi.org/10.15250/joie.2016.15.1.1
  28. O'Neill, D. H., Phillips, V. R., 1992. A review of the control of odour nuisance from livestock building: Part 3, properties of the odorous substances which have been identified in livestock wastes or in the air around them. Journal of Agricultural Engineering Research 53, 23-50. https://doi.org/10.1016/0021-8634(92)80072-Z
  29. Ottosen, L. D. M., Poulsen, H. V., Aa, D., Nielsen, F. K., Nielsen, L. P., Revsbech, N. P., 2009. Observations on microbial activity in acidified pig slurry. Biosystems Engineering 102(3), 291-297. https://doi.org/10.1016/j.biosystemseng.2008.12.003
  30. Parker, D. B., Koziel, J. A., Cai, L., Jacobson, L. D., Akdeniz, N., Bereznicki, S. D., Lim, T. T., Caraway, E. A., Zhang, S., Hoff, S. J., Heber, A. J., Heathcote, K. Y., Hetchler, B. P., 2012. Odor and odorous chemical emissions from animal buildings: Part 6. Odor activity value. Transaction of the ASABE 55(6), 2357-2368. https://doi.org/10.13031/2013.42498
  31. Parker, D. B., Gilley, J., Woodbury, B., Kin, K. H., Galvin, G., Bartelt-Hunt, S. L., Li, X., Snow, D. D., 2013. Odorous VOC emission following land application of swine manure slurry. Atmospheric Environment 66, 91-100. https://doi.org/10.1016/j.atmosenv.2012.01.001
  32. Pieters, J. G., Neukermans, G. J., Clanbeen, B. A., 1999. Farm-scale membrane filtration of sow slurry. Journal of Agricultural Engineering Research 73(4), 403-409. https://doi.org/10.1006/jaer.1999.0435
  33. Rahman, M. M., Salleh, M. A. M., Sultana, N., Kim, M. J., Ra, C. S., 2013. Estimation of total volatile fatty acid (VFA) from total organic carbons (TOCs) assessment through in vitro fermentation of livestock feeds. African Journal of Microbiology Research 7(15), 1378-1384. https://doi.org/10.5897/AJMR12.1694
  34. Saha, C. K., Feilberg, A., Zhang, G., Adamsen, A. P. S., 2011. Effects of airflow on odorants' emissions in a model pig house: A laboratory study using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). Science of the Total Environment 410-411, 161-171. https://doi.org/10.1016/j.scitotenv.2011.09.017
  35. Sanjay, S., Garry, G., Philip, W., 2011. Additives for improving hog farm air quality. [cited 2018 Mar]; Available from: URL: https://articles.extension.org/sites/default/files/HogAir%20additives%20FINAL_0.pdf .
  36. SAS. 2002. SAS/STAT software, version 9.1. SAS Institute Inc., Cary, N.C. USA.
  37. Smith, E. A., Macfarlane, G. T., 1997. Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microbial Ecology 33(3), 180-188. https://doi.org/10.1007/s002489900020
  38. Smith, E. A., Macfarlane, G. T., 1998. Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiology Ecology 25(4), 355-368. https://doi.org/10.1111/j.1574-6941.1998.tb00487.x
  39. Spoelstra, S. F., 1977. Simple phenols and indoles in anaerobically stored piggery wastes. Journal of Science of Food and Agriculture 28(5), 415-423. https://doi.org/10.1002/jsfa.2740280504
  40. Trabue, S., Kerr, B., Scoggin, K., 2016. Odor and odorous compound emissions from manure of swine fed standard and dried distillers grains with soluble supplemented diets. Journal of Environmental Quality 45(3), 915-923. https://doi.org/10.2134/jeq2015.10.0511
  41. Vahlberg, C., Nordell, E., Wiberg, L., Schnurer, A., 2013. Method for correction of VFA loss in determination of dry matter in biomass. Svenskt gastekniskt center.
  42. Willers, H. C., Hobbs, P. J., Ogink, N. W. M., 2003. Odors from evaporation of acidified pig urine, in Proceedings of the 2003 Air Pollution from Agricultural Operations III, U.S. North Carolina, 318-322.
  43. Zhang, R. H., Yang, P., Pan, Z., Wolf, T. D., Turnbell, J. H., 2004. Treatment of swine wastewater with biological conversion, filtration and reverse osmosis: A laboratory study. Transactions of the ASAE 47(1), 243-250. https://doi.org/10.13031/2013.15865
  44. Zhu, J. A., 2001. Review of microbiology in swine manure odor control. 2000. Agriculture, Ecosystems and Environment 78(2), 93-106. https://doi.org/10.1016/S0167-8809(99)00116-4

Cited by

  1. Odor reduction in swine farms during fattening period using probiotics vol.18, pp.2, 2018, https://doi.org/10.15250/joie.2019.18.2.167
  2. 국내외 가축분뇨 퇴액비 이용 분야 암모니아 배출량 인벤토리 비교 연구 vol.38, pp.1, 2018, https://doi.org/10.11626/kjeb.2020.38.1.071
  3. Comprehensive analysis of microbial dynamics linked with the reduction of odorous compounds in a full-scale swine manure pit recharge system with recirculation of aerobically treated liquid fertilizer vol.777, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2021.146122