DOI QR코드

DOI QR Code

Optimization of Solar Cell Electrode Structure for Shingled Module

Shingled 모듈 적용을 위한 태양전지 전극 구조 최적화

  • Oh, Won Je (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Park, Ji Su (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Hwang, Soo Hyun (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Su Ho (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jeong, Chae Hwan (Solar cell R&D center, Korea Institute of Industrial Technology) ;
  • Lee, Jae Hyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 오원제 (성균관대학교 전자전기컴퓨터공학과) ;
  • 박지수 (성균관대학교 전자전기컴퓨터공학과) ;
  • 황수현 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이수호 (성균관대학교 전자전기컴퓨터공학과) ;
  • 정채환 (한국생산기술연구원 태양전지R&D센터) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • Received : 2018.03.12
  • Accepted : 2018.04.03
  • Published : 2018.07.01

Abstract

The shingled photovoltaic module can be produced by joining divided solar cells into a string of busbarless structure and arranging them in series and parallel to produce a module, in order to produce a high output per unit area. This paper reports a study to optimize solar cell electrode structure for shingled photovoltaic module fabrication. The characteristics of each electrode structure were analyzed according to the simulation program as follow: 80.62% fill factor in the six-junction solar cell electrode structure and 19.23% efficiency in the five-junction electrode structure. Therefore, the split electrode structure optimized for high-density and high-output shingled module fabrication is the five-junction solar cell electrode structure.

Keywords

References

  1. C. H. Park, Latest Technology Trends and Market / Policy Status in Photovoltaic Field (Ministry of Environment, KEITI, Sejong, Seoul, 2017) p. 2.
  2. W. S. Han, H. S. Kim, B. S. Choi, and D. K. Oh, Electron. Telecommun. Res. Inst., 22, 86 (2007). [DOI: https://doi.org/10.22648/ETRI.2007.J.220509]
  3. G. Beaucarne, Energy Procedia, 98, 115 (2016). [DOI: https:// doi.org/10.1016/j.egypro.2016.10.087]
  4. J. W. Ho, The Handy Solar cell Simulator, http://www. seris.nus.edu.sg/activities/griddler-2.5.html (2017).
  5. I. Zafirovska, M. K. Juhl, J. W. Weber, J. Wong, and T. Trupke, IEEE J. Photovoltaics, 7, 1496 (2017). [DOI: https:// doi.org/10.1109/JPHOTOV.2017.2732220]
  6. J. Wong, Proc. 2013 IEEE 39th Photovoltaic Specialists Conference (IEEE, Tampa Bay, 2013) p. 933.
  7. A. Khanna, T. Mueller, R. A. Stangl, B. Hoex, P. K. Basu, and A. G. Aberle, IEEE J. Photovoltaics, 3, 1170 (2013). [DOI: https://doi.org/10.1109/JPHOTOV.2013.2270348]