DOI QR코드

DOI QR Code

Microstructure and Electrical Properties of ZnO-Zn2BiVO6-Mn3O4 Varistor

ZnO-Zn2BiVO6-Mn3O4 바리스터의 미세구조와 전기적 특성

  • Hong, Youn-Woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ha, Man-Jin (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong-Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji-Sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 홍연우 (한국세라믹기술원 전자소재부품센터) ;
  • 하만진 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터) ;
  • 윤지선 (한국세라믹기술원 전자소재부품센터)
  • Received : 2018.05.10
  • Accepted : 2018.05.28
  • Published : 2018.07.01

Abstract

This study introduces a new investigation report on the microstructural and electrical property changes of $ZnO-Zn_2BiVO_6-Mn_3O_4$ (ZZMn), where 0.33 mol% of $Mn_3O_4$ and 0.5 mol% of $Zn_2BiVO_6$ were added to ZnO (99.17 mol%) as liquid phase sintering aids. $Zn_2BiVO_6$ contributes to the decrease of sintering temperatures by up to $800^{\circ}C$, and segregates its particles at the grain boundary, while $Mn_3O_4$ enhances ${\alpha}$, the nonlinear coefficient, of varistor properties up to ${\alpha}=62$. In comparison, when the sintering temperature is increased from $800^{\circ}C$ to $1,000^{\circ}C$, the resistivity of ZnO grains decreases from $0.34{\Omega}cm$ to $0.16{\Omega}cm$, and the varistor property degrades. Oxygen vacancy ($V_o^{\bullet}$) (P1, 0.33~0.36 eV) is formed as a dominant defect. Two different kinds of grain boundary activation energies of P2 (0.51~0.70 eV) and P3 (0.70~0.93 eV) are formed according to different sintering temperatures, which are tentatively attributed to be $ZnO/Zn_2BiVO_6$-rich interface and ZnO/ZnO interface, respectively. Accordingly, this study introduces a progressive method of manufacturing ZnO chip varistors by way of sintering ZZMn-based varistor under $900^{\circ}C$. However, to procure a higher reliability, an in-depth study on the multi-component varistors with double-layer grain boundaries should be executed.

Keywords

References

  1. P. R. Bueno, J. A. Varela, and E. Longo, J. Eur. Ceram. Soc., 28, 505 (2008). [DOI: https://doi.org/10.1016/j.jeurceramsoc. 2007.06.011]
  2. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01793.x]
  3. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). [DOI: https://doi.org/10.1111/j.1151-2916.1990.tb05232.x]
  4. K. Eda, IEEE Electr. Insul. Magazine, 5, 28 (1989). [DOI: https://doi.org/10.1109/57.44606]
  5. R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987). [DOI: https://doi.org/10.1146/annurev.ms.17.080187.001503]
  6. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
  7. M. Inada and M. Matsuoka, Advances in Ceramics (American Ceramic Society, Columbus, 1984) p. 91.
  8. S. Hirose, Y. Yamamoto, and H. Niimi, J. Appl. Phys., 104, 013701 (2008). [DOI: https://doi.org/10.1063/1.2949262]
  9. Y. W. Hong, Y. B. Kim, J. H. Paik, J. H. Cho, Y. H. Jeong, J. S. Yun, and W. I. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 74 (2017). [DOI: https://doi.org/10.4313/JKEM. 2017.30.2.74]
  10. Y. W. Hong, Y. B. Kim, J. H. Paik, J. H. Cho, Y. H. Jeong, J. S. Yun, and W. I. Park, J. Sens. Sci. Technol., 25, 440 (2016). [DOI: https://doi.org/10.5369/JSST.2016.25.6.440]
  11. M. I. Mendelson, J. Am. Ceram. Soc., 52, 443 (1969). [DOI: https://doi.org/10.1111/j.1151-2916.1969.tb11975.x]
  12. A. R. West and M. Andres-Verges, J. Electroceram., 1, 125 (1997). [DOI: https://doi.org/10.1023/A:1009906315725]
  13. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). [DOI: https://doi.org/10.1088/0268-1242/5/2/001]
  14. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 21, 738 (2008). [DOI: https://doi.org/10.4313/JKEM.2008.21.8.738]
  15. X. Zhao, J. Li, H. Li, and S. Li, J. Appl. Phys., 111, 124106 (2012). [DOI: https://doi.org/10.1063/1.4729804]
  16. Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004). [DOI: https://doi.org/10.1016/j.ceramint.2003.12.026]