DOI QR코드

DOI QR Code

Performance Evaluation of Pile-Filling Material Using High Calcium Ash by Field Loading Test

고칼슘 연소재를 이용한 매입말뚝 주면고정액의 현장 재하시험을 통한 성능평가

  • 서세관 (지안산업 기업부설연구소) ;
  • 김유성 (전북대학교 토목공학과) ;
  • 임양현 (주식회사 대웅 기업부설연구소) ;
  • 조대성 (전북대학교 토목공학과)
  • Received : 2017.11.27
  • Accepted : 2018.06.11
  • Published : 2018.06.30

Abstract

In this study, static load test and dynamic load test were performed to evaluate pile-filling material (ZA-Soil) of soil-cement injected precast pile method which was developed by using the ash of circulating fluidized boiler as a stimulant for alkali activation reaction of blast furnace slag. As a result of the static load test, the allowable bearing capacity of pile was 1,350 kN, which was the same as the result of using ordinary portland cement. And total settlement was 6.97 mm, and net settlement was 1.48 mm. These are similar to the total settlement, 7.825 mm, and net settlement, 2.005 mm of ordinary portland cement. As a result of the dynamic load test and CAPWAP analysis, the skin friction was 375.0 kN, the end bearing capacity was 3,045.9 kN, and the allowable bearing capacity was 1,368.36 kN. These results are similar to the results of using ordinary portland cement as pile-filling material.

순환 유동층 보일러의 연소재를 고로슬래그의 알칼리 활성화 반응 자극제로 활용하여 개발한 새로운 매입말뚝의 주면고정액(ZA-Soil)을 시멘트밀크 공법의 주면고정액으로 사용한 말뚝에 대하여 정재하시험 및 동재하시험을 실시하여 보통 포틀랜드시멘트(OPC)와 비교하여 성능을 평가하였다. 정재하시험을 수행한 결과 말뚝의 허용하중은 1,350kN로 보통 포틀랜드시멘트를 매입말뚝의 주면고정액으로 사용한 결과와 동일하였고, 전 침하량은 6.97mm, 순 침하량은 1.48mm로 보통 포틀랜트시멘트의 전 침하량 7.825mm, 순 침하량 2.005mm와 유사한 결과를 보이는 것으로 나타났다. 동재하시험 및 CAPWAP분석을 실시한 결과, 새로운 매입말뚝의 주면고정액(ZA-Soil)의 주면 마찰력은 375.0kN, 선단 지지력은 3,045.9kN, 허용지지력은 1,368.36kN으로 나타났고, 포틀랜드시멘트를 매입말뚝의 주면고정액으로 사용한 결과와 유사한 결과를 보이는 것으로 나타났다.

Keywords

References

  1. ACI Committee 229 (2005), "Controlled Low-Strength Materials".
  2. ASTM C 1608 (2012), "Standard Test Method for Chemical Shrinkage of Hydraulic Cement Paste", ASTM International.
  3. Cho, C. W., Lee, W. C., and Jeong, S. S. (2008), "State of the Art and Practice of the Embedded Precast Pile Methods in Korea", Journal of the Korean Geotechnical Society, Vol.2008, pp.559-566.
  4. Korea Land and Housing Corporation (2012), Specifications of Administrative City Construction.
  5. KS F 2413 (2015), "Method of Test for Compressive Strength of Concrete using Portions of Beams broken Flexure", Korea Standards Association.
  6. KS L 5405 (2016), "Fly Ash", Korea Standards Association.
  7. Lee, J. K. (2016), "Cement Industry and Latest Research Trend", Ceramist, Vol.19, No.2, pp.59-64.
  8. Lee, Y. S. (2012), "An Experimental Study on the Quality Properties of Concrete using Dredged Soil", Master Thesis, Hanbat National University.
  9. Korea Land and Housing Corporation (2012), "LH Guide Specifications".
  10. Seo, J. H., Baek, C. S., Kim, Y. J., Choi, M. K., Cho, K. H., and Ahn, J. W. (2017), "Study on the Free CaO Analysis of Coal Ash in the Domestic Circulating Fluidized Bed Combustion using ethylene glycol method", Journal of Energy Engineering, Vol.26, No.1, pp.1-8. https://doi.org/10.5855/ENERGY.2017.26.1.001
  11. Shin, H. B. (2014), "Effect of Expansion Grout on Frictional Resistance", Doctor Thesis, Myongji University.
  12. Song, S. H. (2017), "A Study on the Evaluation of Practical Application of PHC Pile-Filling Material utilizing High Calcium Fly Ash", Master Thesis, Chonbuk National University.
  13. Terzaghi and Peck (1967), "Soil Mechanics in Engineering Practice", John Wiley, New York, 2nd Edition.
  14. Won, J. P. and Lee, Y. S. (2001), "Properties of Controlled Low- Strength Material Containing Bottom Ash", Journal of the Korea Concrete Institute, Vol.13, No.3, pp.294-300. https://doi.org/10.22636/JKCI.2001.13.3.294
  15. Woo, Y. Y. (2015) "Characteristics and Evaluation of Circulating Fluidized Bed Boiler Ash", Doctor Thesis, Kunsan National University.