DOI QR코드

DOI QR Code

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong (Division of Bio-System Engineering, Gyeongsang National University) ;
  • Ryu, Chan Seok (Division of Bio-System Engineering, Gyeongsang National University) ;
  • Kim, Seong Heon (Division of Bio-System Engineering, Gyeongsang National University) ;
  • Jun, Sae Rom (Division of Bio-System Engineering, Gyeongsang National University) ;
  • Jang, Si Hyeong (Division of Bio-System Engineering, Gyeongsang National University) ;
  • Park, Jun Woo (Division of Bio-System Engineering, Gyeongsang National University) ;
  • Sarkar, Tapash Kumar (Division of Bio-System Engineering, Gyeongsang National University) ;
  • Song, Hye young (Division of Bio-System Engineering, Gyeongsang National University)
  • Received : 2018.03.03
  • Accepted : 2018.05.25
  • Published : 2018.06.01

Abstract

Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

Keywords

References

  1. Elarab, M., A. M. Ticlavilca, A. F. Torres-Rua, I. Maslova and M. McKee. 2015. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. International Journal of Applied Earth Observation and Geoinformation 43:32-42. https://doi.org/10.1016/j.jag.2015.03.017
  2. Gabriel, J. L., P. J. Zarco-Tejada, P. J. Lopez-Herrera, E. Perez-Martin, M. Alonso-Ayuso and M. Quemada. 2017. Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosystems Engineering 160:124-133. https://doi.org/10.1016/j.biosystemseng.2017.06.003
  3. Gitelson, A. A., Y. J. Kaufman and M. N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58(3):289-298. https://doi.org/10.1016/s0034-4257(96)00072-7
  4. Haboudane, D., J. R. Miller, E. Pattey, P. J. Zarco-Tejada and I. B. Strachan. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment 90(3):337-352. https://doi.org/10.1016/j.rse.2003.12.013
  5. Huang, Y., S. J. Thomson, H. J. Brand and K. N. Reddy. 2016. Development and evaluation of low-altitude remote sensing systems for crop production management. International Journal of Agricultural and Biological Engineering 9(4):1-11. https://doi.org/10.3965/j.ijabe.20160904.2010
  6. Jin, X., L. Kumar, Z. Li, H. Feng, X. Xu, G. Yang and J. Wang. 2018. A review of data assimilation of remote sensing and crop models. European Journal of Agronomy 92:141-152. https://doi.org/10.1016/j.eja.2017.11.002
  7. Jordan, C. F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology 50(4):663-666. https://doi.org/10.2307/1936256
  8. Kang, Y. S., S. H. Kim, J. G. Kang, Y. K. Hong, T. K. Sarkar and C. S. Ryu. 2016. Estimation of leaf dry mass and nitrogen content for soybean using multi-spectral camera mounted on unmanned aerial vehicle. Journal of Agriculture & Life Science 50(6):183-190. https://doi.org/10.14397/jals.2016.50.6.183
  9. Kang, Y. S., S. H. Kim, J. G. Kang, T. K. Sarkar, Y. S. Kwon, S. R. Jun and C. S. Ryu. 2017. Model assessment multitemporal monitoring of Chinese cabbage growth using low altitude remote sensing system. Journal of Agriculture & Life Science 51(4):149-160. https://doi.org/10.14397/jals.2017.51.4.149
  10. Li, B., J. Morris and E. B. Martin. 2002. Model selection for partial least squares regression. Chemometrics and Intelligent Laboratory Systems 64(1):79-89. https://doi.org/10.1016/S0169-7439(02)00051-5
  11. Liu, X., K. Zhang, Z. Zhang, Q. Cao, Z. Lv, Z. Yuan, Y. Tian, W. Cao and Y. Zhu. 2017. Canopy chlorophyll density based index for estimating nitrogen status and predicting grain yield in rice. Frontiers in Plant Science 8:1829. https://doi.org/10.3389/fpls.2017.01829
  12. Martinez, J. L., H. Saulo, H. B. Escobar and J. Leao. 2017. A new model selection criterion for partial least squares regression. Chemometrics and Intelligent Laboratory Systems 169:64-78. https://doi.org/10.1016/j.chemolab.2017.08.006
  13. Mengmeng, D., N. Noboru, I. Atsushi and S. Yukinori. 2017. Multi-temporal monitoring of wheat growth by using images from satellite and unmanned aerial vehicle. International Journal of Agricultural and Biological Engineering 10(5):1-13. https://doi.org/10.25165/j.ijabe.20171005.3180
  14. Mulla, D. J. 2013. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering 114(4): 358-371. https://doi.org/10.1016/j.biosystemseng.2012.08.009
  15. Nguy-Robertson, A., A. Gitelson, Y. Peng, A. Vina, T. Arkebauer and D. Rundquist. 2012. Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agronomy Journal 104(5):1336-1347. https://doi.org/10.2134/agronj2012.0065
  16. Noack, P. O. 2016. Estimating triticale dry matter yield in parcel plot trials from aerial and ground based spectral measurements. In: IFAC-PapersOnLine, pp.404-408, Laxenburg, Austria. https://doi.org/10.1016/j.ifacol.2016.10.074
  17. Onoyama, H., C. Ryu, M. Suguri and M. Iida. 2013. Potential of hyperspectral imaging for constructing a yearinvariant model to estimate the nitrogen content of rice plants at the panicle initiation stage. In: IFAC Proceedings Volumes, pp.219-224, Laxenburg, Austria. https://doi.org/10.3182/20130828-2-SF-3019.00054
  18. Rouse Jr, J., R. H. Haas, J. A. Schell and D. W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. Goddard Space Flight Center, Greenbelt. Washington, D.C.: GPO.
  19. Ryu, C., M. Suguri and M. Umeda. 2011. Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing. Field Crops Research 122(3):214-224. https://doi.org/10.1016/j.fcr.2011.03.013
  20. Ryu, C., M. Suguri, M. Iida, M. Umeda and C. Lee. 2011. Integrating remote sensing and GIS for prediction of rice protein contents. Precision Agriculture 12(3): 378-394. https://doi.org/10.1007/s11119-010-9179-0
  21. Sharma, L. K., H. Bu, A. Denton and D. W. Franzen. 2015. Active-optical sensors using red NDVI compared to red edge NDVI for prediction of corn grain yield in North Dakota, USA. Sensors 15(11):27832-27853. https://doi.org/10.3390/s151127832
  22. Song, S., W. Gong, B. Zhu and X. Huang. 2011. Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance. ISPRS Journal of Photogrammetry and Remote Sensing 66(5):672-682. https://doi.org/10.1016/j.isprsjprs.2011.05.002
  23. Stellacci, A. M., A. Castrignano, A. Troccoli, B. Basso and G. Buttafuoco. 2016. Selecting optimal hyperspectral bands to discriminate nitrogen status in durum wheat: a comparison of statistical approaches. Environmental Monitoring and Assessment 188(3):199. https://doi.org/10.1007/s10661-016-5171-0
  24. Swain, K. C., S. J. Thomson and H. P. W. Jayasuriya. 2010. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE 53(1):21-27. https://doi.org/10.13031/2013.29493
  25. Teoh, C. C., N. Mohd Nadzim, M. J. Mohd Shahmihaizan, I. Mohd Khairil Izani, K. Faizal and H. B. Mohd Shukry. 2016. Rice yield estimation using below cloud remote sensing images acquired by unmanned airborne vehicle system. International Journal on Advanced Science. Engineering and Information Technology 6(4):516-519. http://dx.doi.org/10.18517/ijaseit.6.4.898
  26. Vina, A., A. A. Gitelson, A. L. Nguy-Robertson and Y. Peng. 2011. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment 115(12):3468-3478. https://doi.org/10.1016/j.rse.2011.08.010
  27. Wang, Y. P., K. W. Chang, R. K. Chen, J. C. Lo and Y. Shen. 2010. Large-area rice yield forecasting using satellite imageries. International Journal of Applied Earth Observation and Geoinformation 12(1):27-35. https://doi.org/10.1016/j.jag.2009.09.009
  28. Xuefeng, L., L. Qiang, H. Shaolan, Y. Shilai, H. Deyu, W. Zhitao, X. Rangjin, Z. Yongqiang and D. Lie. 2016. Estimation of carbon and nitrogen contents in citrus canopy by low-altitude remote sensing. International Journal of Agricultural and Biological Engineering 9(5):149-157. https://doi.org/10.3965/j.ijabe.20160905.2246
  29. Zarco-Tejada, P. J., M. L. Guillen-Climent, R. Hernandez-Clemente, A. Catalina, M. R. Gonzalez and P. Martin. 2013. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agricultural and Forest Meteorology 171-172:281-294. https://doi.org/10.1016/j.agrformet.2012.12.013
  30. Zhou, X., H. B. Zheng, X. Q. Xu, J. Y. He, X. K. Ge, X. Yao, T. Cheng, Y. Zhu, W. X. Cao and Y. C. Tian. 2017. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing 130:246-255. https://doi.org/10.1016/j.isprsjprs.2017.05.003