DOI QR코드

DOI QR Code

Estimation of Extreme Sea Levels Reflecting Tide-Surge Characteristics

조석-해일 특성을 반영한 극치해면고 산정

  • Kang, Ju Whan (Dept. of Civil Engineering, Mokpo National University) ;
  • Kim, Yang-Seon (Dept. of Civil Engineering, Mokpo National University)
  • 강주환 (목포대학교 토목공학과) ;
  • 김양선 (목포대학교 토목공학과)
  • Received : 2018.04.24
  • Accepted : 2018.05.10
  • Published : 2018.06.30

Abstract

Tide-surge characteristics of the West/South domestic coasts were analyzed with a tool of EST (empirical simulation technique). As a result, stations of Incheon, Gunsan, Mokpo and Busan are categorized as tide-dominant coasts, while Yeosu, Tongyoung and Busan are as surge-dominant coasts. In the tide-dominant coasts, extreme sea level of less than 50-yr frequency is formed without typhoon-surge, while only 10-yr extreme sea level is formed in the surge-dominant coasts. As the results of casual condition of extreme sea level formation considering the relative degree of surge on tide, the regional characteristics were detected also. Three methods for estimating the design tide level were compared. The AHHW method shows an unrealistic outcomes of the concern of over estimate design. Furthermore, the probability distribution function method has been concerned as causing missing data if a huge typhoon occurs in a neap tide or a low tide. To cope with these drawbacks, the applicability of the EST method is proved to be suitable especially in tide-dominant coasts.

경험모의기법을 통해 국내 서남해안의 조석과 해일특성을 고찰하였다. 그 결과 인천, 군산, 목포, 완도 등은 조석지배해역이고 여수, 통영, 부산 등은 해일지배해역으로 구분되었다. 조석지배해역에서는 태풍해일이 발생하지 않아도 50년 이하의 빈도를 갖는 극치해면고가 형성될 수 있는 반면 해일지배해역에서는 10년 빈도에서만 태풍해일 없이 극치해면고가 형성될 수 있는 양상을 보이고 있다. 각 해역에서 빈도별로 평균적인 상황으로 어느 정도의 조위에 어느 정도의 해일이 겹쳐 극치해면고가 형성되는지 고찰한 결과 이 역시 해역별로 구분되는 특성을 보이고 있다. 이와 함께 설계조위 산정을 위한 세 가지 방법을 비교고찰한 결과 약최고고조위방법은 과다설계의 우려가 매우 큰 비현실적인 결과를 보이고 있으며, 확률분포함수방법은 대형태풍이 소조기나 저조시 발생할 경우 해당자료가 결과에 반영되지 않거나 매우 축소된 결과가 도출될 우려가 있다는 단점이 있다. 이러한 단점들을 해결함과 동시에 서해안과 같이 조석이 지배적인 해역에 적합한 방법으로 경험모의기법의 적용성을 확인하였다.

Keywords

References

  1. Bacopoulos, P. (2017). Tide-surge historical assessment of extreme water levels for the St. Johns River: 1928-2017. Journal of Hydrology, 533, 624-636.
  2. Divoky, D. and Resio, D.T. (2007). Performance of the JPM and EST methods in storm surge studies. 10th International Workshop on Wave Hindcasting and Forecasting, and Coastal Hazard Symposium, North Shore, Oahu, Hawaii.
  3. Goring, D.G., Stephens, S.A., Bell, R.G. and Pearson, C.P. (2011). Estimation of extreme sea levels in a tide-dominated environment using short data records. Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(3), 150-159. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000071
  4. Hawkes, P.J., Gouldby, B.R., Tawn, J.A. and Owen, M.W. (2002). The joint probability of waves and water levels in coastal engineering design. Journal of Hydraulic Research, 40(3), 241-251. https://doi.org/10.1080/00221680209499940
  5. Jeong, S.T., Kim, J.D., Ko, D.H. and Yoon, G.L. (2008). Parameter estimation and analysis of extreme highest tide level in marginal seas around Korea. Journal of Korean Society of Coastal and Ocean Eng., 20(5), 482-490 (in Korean).
  6. Kang, J.W., Joo, Y.-M., Cho, H. and Kweon, H.-M. (2014a). Spatio-temporal variability of AHHW in relation with the design sea level. Journal of Korean Society of Coastal and Ocean Eng., 26(2), 72-80 (in Korean). https://doi.org/10.9765/KSCOE.2014.26.2.72
  7. Kang, J.W., Kim, Y.S. and Choun, Y.-S. (2017). Estimation of probable maximum sea level at macro-tidal area. Journal of Coastal Disaster Prevention, 4(2), 93-100 (in Korean). https://doi.org/10.20481/kscdp.2017.4.2.93
  8. Kang, J.W., Kim, Y.S., Cho, H.Y. and Shim, J.-S. (2011). Characteristics of nearshore surge-intensity. Journal of Korean Society of Coastal and Ocean Eng., 23(6), 458-465 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.6.458
  9. Kang, J.W., Kim, Y.-S., Cho, H. and Shim, J.-S. (2012). Estimation of extreme sea levels at tide-dominated coastal zone. Journal of Korean Society of Coastal and Ocean Eng., 24(6), 381-389 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.6.381
  10. Kang, J.W., Kim, Y.-S., Yoon, Y.-K. and Shim, J.-S. (2014b). Appearance of tide-surge interaction along the West/South Coasts. Journal of Korean Society of Coastal and Ocean Eng., 26(6), 352-358 (in Korean). https://doi.org/10.9765/KSCOE.2014.26.6.352
  11. Ministry of Land, Infrastructure, Transport and Tourism (2009). Technical standards and commentaries for port and harbor facilities in Japan (Japanese version).
  12. Ministry of Land, Transport and Maritime Affairs (2010). Development of storm surge and tsunami prediction system and estimation of design water level for major ports in Korea (in Korean).
  13. Ministry of Oceans and Fisheries (2014). Design criteria for harbors (in Korean).
  14. Pugh, D. (2004). Changing sea levels; Effects of tides, weather and climate, Cambridge University Press, Cambridge.
  15. Royston, S.J., Horsburgh, K.J. and Lawry, J. (2013). Application of rule based methods to predicting storm surge. Continental Shelf Research, 37, 79-91.
  16. Scheffner, N.W., Clausner, J.E., Militello, A., Borgman, L.E., Edge, B.L. and Grace, P.J. (1999). Use and application of the empirical simulation technique; User's guide. US Army Corps of Engineers.
  17. Toro, G.R., Resio, D.T., Divoky, D., Niedoroda, A.W. and Reed, C. (2010). Efficient joint-probability methods for hurricane surge frequency analysis. Ocean Engineering, 37, 125-134. https://doi.org/10.1016/j.oceaneng.2009.09.004
  18. Weiss, J., Bernardara, P., Andreewsky, M. and Benoit, M. (2012). Seasonal autoregressive modeling of a skew storm surge series. Ocean Modelling, 47, 41-54. https://doi.org/10.1016/j.ocemod.2012.01.005