DOI QR코드

DOI QR Code

Factors Influencing on the Cognitive Function in Type 2 Diabetics

2형 당뇨병 환자의 인지 기능에 영향 미치는 인자

  • Goh, Dong Hwan (Department of Psychiatry, Kosin University College of Medicine) ;
  • Cheon, Jin Sook (Department of Psychiatry, Kosin University College of Medicine) ;
  • Choi, Young Sik (Department of Internal Medicine, Kosin University College of Medicine) ;
  • Kim, Ho Chan (Department of Psychiatry, Kosin University College of Medicine) ;
  • Oh, Byoung Hoon (Department of Psychiatry, Yonsei University College of Medicine)
  • 고동환 (고신대학교 의과대학 정신건강의학교실) ;
  • 전진숙 (고신대학교 의과대학 정신건강의학교실) ;
  • 최영식 (고신대학교 의과대학 내과학교실) ;
  • 김호찬 (고신대학교 의과대학 정신건강의학교실) ;
  • 오병훈 (연세대학교 의과대학 정신건강의학교실)
  • Received : 2018.04.25
  • Accepted : 2018.06.25
  • Published : 2018.06.30

Abstract

Objectives : The aims of this study were to know the frequency and the nature of cognitive dysfunction in type 2 diabetics, and to reveal influencing variables on it. Methods : From eighty type 2 diabetics (42 males and 38 females), demographic and clinical data were obtained by structured interviews. Cognitive functions were measured using the MMSE-K (Korean Version of the Mini-Mental State Examination) and the Korean Version of the Montreal Cognitive Assessment (MoCA-K) tests. Severity of depression was evaluated by the Korean Version of the Hamilton Depression Rating Scale (K-HDRS). Results : 1) Among eighty type 2 diabetics, 13.75% were below 24 on the MMSE-K, while 38.8% were below 22 on the MoCA-K. 2) The total scores and subtest scores of the MoCA-K including visuospatial/ executive, attention, language, delayed recall and orientation were significantly lower in type 2 diabetics with cognitive dysfunction (N=31) than those without cognitive dysfunction (N=49) (p<0.001, respectively). 3) There were significant difference between type 2 diabetics with and those without cognitive dysfunction in age, education, economic status, body mass index, duration of diabetes, total scores of the K-HDRS, the MMSE-K and the MoCA-K (p<0.05, respectively). 4) The total scores of the MoCA-K had significant correlation with age, education, body mass index, family history of diabetes, duration of diabetes, total scores of the K-HDRS (p<0.05, respectively). 5) The risks of cognitive dysfunction in type 2 diabetics were significantly influenced by sex, education, fasting plasma glucose and depression. Conclusions : The cognitive dysfunction in type 2 diabetics seemed to be related to multiple factors. Therefore, more comprehensive biopsychosocial approaches needed for diagnosis and management of type 2 diabetes.

연구목적 본 연구의 목적은 2형 당뇨병 환자에서 인지 장애의 빈도와 특성 및 이에 연관되는 변인과 위험 인자를 알아보기 위함이다. 방 법 2형 당뇨병 환자 80명(남성 42명, 여성 38명)을 대상으로 구조적 면담을 통해서 인구학적 및 임상적 정보를 얻었다. 한국판 간이 정신상태 평가(K-MMSE)와 한국판 몬트리올 인지평가(MoCA-K)를 사용해서 인지기능을 평가하였고, 한국판 Hamilton 우울증 평가 척도(K-HDRS)를 사용해서 우울증을 평가하였다. 결 과 1) MMSE-K 총점 24점 이하는 13.75%, MoCA-K 총점 22점 이하는 38.8%였다. 2) 2형 당뇨병 환자 중에서 인지 장애가 있는 군(N=31명)은 인지 장애가 없는 군(N=49명) 보다 MoCA-K 총점, 시공간/실행력, 주의력, 언어, 지연 회상력, 지남력 소검사 점수가 유의하게 낮았다(p<0.001). 3) 인지 장애가 있는 군과 인지 장애가 없는 군 간에는 연령, 교육 수준, 경제 상태, 체질량 지수, 당뇨병 이병 기간, K-HDRS 총점, MMSE-K 총점 및 MoCA-K 총점에서 유의한 차이가 있었다(p<0.05). 4) MoCA-K 총점은 연령, 교육 수준, 체질량 지수, 당뇨병의 가족력, 당뇨병의 이병 기간, K-HDRS 총점과 유의한 상관관계가 있었다(p<0.05). 5) 2형 당뇨병 환자에서 남성, 낮은 교육 수준, 높은 공복 혈당치, 우울증의 심한 정도는 유의하게 인지 장애의 위험을 증가시킨다. 결 론 2형 당뇨병 환자의 인지 장애는 복합적인 여러 요인이 관계되는 것으로 생각된다. 따라서 이들의 진단과 치료에는 생물 심리 사회학적인 관점이 망라된 좀 더 포괄적인 접근이 요청된다.

Keywords

References

  1. Meneilly GS, Tessier DM. Diabetes, dementia and hypoglycemia. Can J Diabetes 2016;40:73-76. https://doi.org/10.1016/j.jcjd.2015.09.006
  2. Roriz-Filho JS, Sa-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves MLF, Moriguti JC, Roriz-Cruz M. (Pre) diabetes, brain aging, and cognition. Biochim Biophys Acta 2009;1792:432-443. https://doi.org/10.1016/j.bbadis.2008.12.003
  3. Mwamburi M, Qiu WQ. Different associations of premorbid intelligence vs. current cognition with BMI, insulin and diabetes in the homebound elderly. Integr Mol Med 2016;3:547- 552.
  4. Willette AA, Xu G, Johnson SC, Birdsill AC, Jonaitis EM, Sager MA, Hermann BP, Rue AL, Asthana S, Bendlin BB. Insulin resistance, brain atrophy, and cognitive performance in late middle-aged adults. Diabetes Care 2013;36:443-449. https://doi.org/10.2337/dc12-0922
  5. Cole AR, Astell A, Green C, Sutherland C. Nolecular connexions between dementia and diabetes. Neurosci Biobehav Rev 2007;31:1046-1063. https://doi.org/10.1016/j.neubiorev.2007.04.004
  6. Mittal K, Katare DP. Shared links between type 2 diabetes mellitus and Alzheimer's disease: A review. Diabet Metabol Synd Clin Res Rev 2016;10S:S144-S149.
  7. Moran C, Phan TG, Chen J, Blizzard L, Beare R, Venn A, Munch G, Wood AG, Forbes J, Greenaway TM, Pearson S, Srikanth V. Brain atrophy in type 2 diabetes: Regional distribution and infuence on cognition. Diabetes Care 2013;36:4036- 4042. https://doi.org/10.2337/dc13-0143
  8. Lee JS, Bae SO, Ahn YM, Park DB, Noh KS, Shin HK, Woo HW, Lee HS, Han SI, Kim YS. Validity and Reliability of the Korean Version of the Hamilton Depression Rating Scale. J Korean Neuropsychiatr Assoc 2005;44:456-465.
  9. Kwon YC, Park JH. Korean Version of Mini-Mental State Examination (MMSE-K) Part I: Development of the Test for the Elderly. J Korean Neuropsychiatr Assoc 1989;28:125-135.
  10. Park JH, Kwon YC. Standardization of Korean Version of Mini-Mental State Examination(MMSE-K) for Use in the Elderly. Part II: Diagnostic Validity. J Korean Neuropsychiatr Assoc 1989;28:508-513.
  11. Nasreddine Z, Lee JY. Korean Version of the Montreal Cognitive Assessment. March 1, 2006. Available from: URL:http://www.mocatest.org.
  12. Nazem S, Siderowf AD, Duda JE, Have TT, Colcher A, Horn SS. Montreal cognitive assessment performance in patients with Parkinson's examination score. J Am Geriatr Soc 2009;57:304-308. https://doi.org/10.1111/j.1532-5415.2008.02096.x
  13. Lee JY, Lee DW, Cho SJ, Na DL, Jeon HJ, Kim SK. Brief screening for mild cognitive impairment in elderly outpatient clinic: Validation of the Korean Version of the Montreal Cognitive Assessment. J Geriatr Psychiat Neurol 2008;21:104-110. https://doi.org/10.1177/0891988708316855
  14. Bourdel-Marchasson I, Lapre E, Laksir H, Puget E. Insulin resistance, diabetes and cognitive function: consequences for preventive strategies. Diabetes Metab 2010;36:173-181. https://doi.org/10.1016/j.diabet.2010.03.001
  15. Messier C. Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiol Aging 2005;26S:S26-S30.
  16. Cheke LG, Bonnici HM, Clayton NS, Simons JS. Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain. Neuropsychologia 2017;96: 137-149. https://doi.org/10.1016/j.neuropsychologia.2017.01.013
  17. Calvo-Ochoa E, Arias C. Cellular and metabolic alterations in the hippocampus caused by insulin signalling dysfunction and its association with cognitive impairment during aging and Alzheimer's disease: studies in animal models. Diabetes Metab Res Rev 2015;31:1-13.
  18. Gonzalez-Reyes RE, Aliev G, Avila-Rodriques M, Barreto GE. Alterations in glucose metabolism on cognition: a possible link between diabetes and dementia. Curr Pharm Des 2016; 22:812-818. https://doi.org/10.2174/1381612822666151209152013
  19. Tomlin A, Sinclair A. The influence of cognition on self- management of type 2 diabetes in older people. Psychol Res Behav Manag 2016;9:7-20.
  20. West RK, Ravona-Springer R, Heymann A, Schmeidler J, Leroith D, Koifman K, D'Arcy RCN, Song X, Guerrero-Berroa E, Preiss R, Hoffman H, Sano M, Silverman JM, Schnaider-Beeri M. Waist circumference is correlated with poorer cognition in elderly type 2 diabetes women. Alzheimer Dementia 2016;12:925-929. https://doi.org/10.1016/j.jalz.2016.03.017
  21. Heni M, Kullmann S, Preissl H, Fritsche A, Haring H-U. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol 2015;11:701-711. https://doi.org/10.1038/nrendo.2015.173
  22. Kleinridders A, Cai W, Cappellucci L, Ghazarian A, Collins WR, Vienberg SG, Pothos EN, Kahn CR. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci USA 2015;112:3463-3468. https://doi.org/10.1073/pnas.1500877112
  23. Awad N, Gagnon M, Messier C. The Relationship between Impaired Glucose Tolerance, Type 2 Diabetes, and Cognitive Function. Journal of Clinical and Experimental Neuropsychology 2004;26:1044-1080 https://doi.org/10.1080/13803390490514875
  24. Zhao W-Q, Townsend M. Insulin resistance and amyloido- genesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta 2009;1792: 482-496. https://doi.org/10.1016/j.bbadis.2008.10.014
  25. Dominguez RO, Pagano MA, Marschoff ER, Gonzalez SE, Repetto MG, Serra JA. Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2: associations and a hypothesis. Neurologia 2014;29:567-572. https://doi.org/10.1016/j.nrl.2013.05.006
  26. Wrighten SA, Piroli GG, Grillo CA, Reagan LP. A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochim Biophys Acta 2009;1792:444-453. https://doi.org/10.1016/j.bbadis.2008.10.013
  27. Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer's disease crosstalk. Neurosci Biobehav Rev 2016;64:272-287. https://doi.org/10.1016/j.neubiorev.2016.03.005
  28. Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol 2013;218:1-11. https://doi.org/10.1530/JOE-12-0521
  29. Nelson PT, Smith CD, Abner EA, Schmitt FA, Scheff SW, Davis GJ, Keller JN, Jicha GA, Davis D, Wang-Xia W, Hartman A, Katz DG, Markesbery WR. Human cerebral neuropathology of Type 2 diabetes mellitus. Biochi Biophys Acta 2009;1792:454-469. https://doi.org/10.1016/j.bbadis.2008.08.005
  30. Biessels GJ, Kappelle LJ. Increased risk of Alzheimer's disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Transact 2005; 33:1041-1044.
  31. Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Haring HU. Brian insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev 2016; 96:1169-1209. https://doi.org/10.1152/physrev.00032.2015
  32. Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 2006; 96:1005-1015. https://doi.org/10.1111/j.1471-4159.2005.03637.x
  33. Kullmann S, Heni M, Veit R, Scheffler K, Machann J, Haring H-U, Fritsche A, Preissl H. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care 2015;38:1044-1050. https://doi.org/10.2337/dc14-2319
  34. Cetinkalp S, Simsir IY, Ertek S. Insulin resistance in brain and possible therapeutic approaches. Curr Vasc Pharmacol 2014;12:553-564. https://doi.org/10.2174/1570161112999140206130426
  35. Cholerton B, Baker LD, Craft S. Insulin resistance and pathological brain ageing. Diabet Med 2011;28:1463-1475. https://doi.org/10.1111/j.1464-5491.2011.03464.x
  36. De Felice FG, Lourenco MV, Ferreira ST. How does brain insulin resistance develop in Alzheimer's disease? Alzheimer Dementia 2014;10:S26-S32. https://doi.org/10.1016/j.jalz.2013.12.004
  37. Ferreira ST, Clarke JR, Bomfm TR, De Felice FG. Infammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimer Dementia 2014;10:S76-S83. https://doi.org/10.1016/j.jalz.2013.12.010
  38. de la Monte SA, Wands JR. Review of insulin and insulinlike growth factor expression, signalling, and malfunction in the central nervous system: relevance to Alzheinmer's disease. J Alzheimer Dis 2005;7:45-61. https://doi.org/10.3233/JAD-2005-7106
  39. Diehl T, Mullins R, Kapogiannis D. Insulin resistance in Alzheimer's disease. Translational Res 2017;183:26-40. https://doi.org/10.1016/j.trsl.2016.12.005
  40. Su F, Shu H, Ye Q, Wang Z, Xie C, Yuan B, Zhang Z, Bai F. Brain insulin resistance deteriorates cognition by altering the topological features of brain networks. Neuroimage Clin 2017;13:280-287. https://doi.org/10.1016/j.nicl.2016.12.009
  41. Neumann KF, Rojo L, Navarrete LP, Farias G, Reyes P, Maccioni RB. Insulin resistance and Alzheimer's disease: Molecular links & clinical implications. Curr Alzheimer Res 2008;5:438-447. https://doi.org/10.2174/156720508785908919
  42. Umegaki H. Insulin resistance in the brain: A new therapeutic target for Alzheimer's disease. J Diabet Invest 2013;4:150-151. https://doi.org/10.1111/jdi.12027
  43. Holscher C, Li L. New roles for insulin-like hormones in neuronal signalling and protection: New hopes for novel treatment of Alzheimer's disease? Neurobiol Aging 2010;31:1495-1502. https://doi.org/10.1016/j.neurobiolaging.2008.08.023
  44. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 2008a;11:309-317. https://doi.org/10.1038/nn2055
  45. Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann R, Egan JM, Mattson MP. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 2008b;18:1085-1088. https://doi.org/10.1002/hipo.20470
  46. Datusalia AK, Sharma SS. Amelioration of diabetes-induced cognitive defcits by GSK-$3{\beta}$ inhibition is a attributed to modulation of neurotransmitters and neuroinflammation. Mol Neurobiol 2014;50:390-405. https://doi.org/10.1007/s12035-014-8632-x