DOI QR코드

DOI QR Code

PLA/LDPE Blend Monofilament for 3D Printing

3D 프린터 용 PLA/LDPE 고분자 블렌드 모노필라멘트

  • 김유진 (영남대학교 대학원 유기신소재공학과) ;
  • 최혜미 (영남대학교 대학원 유기신소재공학과) ;
  • 신동수 (클래비스) ;
  • 김규식 (클래비스) ;
  • 장순호 (한국섬유개발연구원) ;
  • 오태환 (영남대학교 대학원 유기신소재공학과)
  • Received : 20180431
  • Accepted : 2018.05.21
  • Published : 2018.06.30

Abstract

In this study, the effects of a compatibilizer and the blend ratio of low-density polyethylene (LDPE) on the 3D printability of polylactic acid (PLA)/LDPE monofilaments were investigated. Two kinds of PLA and LDPE with different melt indices (MI) were selected for the PLA/LDPE blend monofilaments. An ethylene/butyl acrylate/glycidyl methacrylate terpolymer, having affinities for both PLA and LDPE, was used as a compatibilizer. The tensile strength of the PLA/LDPE monofilaments decreased with increasing amounts of LDPE. PLA with a lower MI of 6 showed better printability than PLA with higher MIs of 15-30, due to its higher viscosity. When the compatibilizer was added, the compatibility and 3D printability increased. The printability increased when the compatibilizer was added up to 20 wt.%, but decreased when LDPE was added at over 30 wt.%.

Keywords

References

  1. W. Choi, J. H. Woo, J. B. Jeon, and S. S. Yoon, "Measurement of Structural Properties of PLA Filament as a Supplier of 3D Printer", J. Korean Soc. Agricul. Eng., 2015, 57, 141-152.
  2. E. J. Choi, S. A. Kim, J. Y. Bae, Y. J. Kwon, and K. H. Lee, "A Study on the State of the Art of 3D Printers", J. Korea Soc. Comput. Inform., 2013, 21, 358-388.
  3. W. G. Oh, "Customized Model Manufacturing for Patients with Pelvic Fracture Using FDM 3D Printer", J. Korea Digital Contents Society, 2014, 14, 370-377.
  4. A. Gregor, E. Filova, M. Novak, J. Kronek, H. Chlup, M. Buzgo, V. Blahnova, V. Lukasova, M. Bartos, A. Necas, and J. Hosek, "Designing of PLA Scaffolds for Bone Tissue Replacement Fabricated by Ordinary Commercial 3D Printer" J. Biol. Eng., 2017, 11, 31-52. https://doi.org/10.1186/s13036-017-0074-3
  5. H. N. Chia and B. M. Wu, "Recent Advances in 3D Printing of Biomaterials", J. Biol. Eng., doi:10.1186/s13036-015-0001-4, 2015.
  6. V. C. Lee, "Medical Applications for 3D Printing: Current and Projected Uses", Pharmacy and Therapeutic, 2014, 39, 704-711.
  7. J. R. Dorgan, H. Lehermeier, and M. Mang, "Thermal and Rheological Properties of Commercial Grade Poly(lactic acid)", J. Polym. Environ., 2000, 8, 1-9. https://doi.org/10.1023/A:1010185910301
  8. K. Mezghani and J. E. Spruiell, "High Speed Melt Spinning of Poly(l-lactic acid) Filaments", J. Polym. Sci. Part B: Polym. Phys., 1998, 36, 1005-1012. https://doi.org/10.1002/(SICI)1099-0488(19980430)36:6<1005::AID-POLB9>3.0.CO;2-V
  9. N. C. Liu and W. E. Baker, "Reactive Polymers for Blend Compatibilization", Adv. Polym. Tech., 1992, 11, 249-262. https://doi.org/10.1002/adv.1992.060110403
  10. M. Xanthos, M.‐W. Young, G. P. Karayanndis, and D. N. Bikiaris, "Reactive Modification of Polyethylene Terephthalate with Polyepoxides", Polym. Eng. Sci., 2001, 41, 643-655. https://doi.org/10.1002/pen.10760
  11. Y. F. Kim, C. N. Choi, Y. D. Kim, K. Y. Lee, and M. S. Lee, "Compatibilization of Immiscible Poly(l-lactide) and Low Density Polyethylene Blends", Fiber. Polym., 2004, 5, 270-274. https://doi.org/10.1007/BF02875524