DOI QR코드

DOI QR Code

Spatio-Temporal Changes of Beetles and Moths by Habitat Types in Agricultural Landscapes

농촌경관에서 서식지 유형에 따른 딱정벌레와 나방의 시공간적 변화 양상

  • Kim, Nang-Hee (Department of Environmental Education, Mokpo National University) ;
  • Choi, Sei-Woong (Department of Environmental Education, Mokpo National University) ;
  • Lee, Jae-Seok (Department of Biology, Chungnam National University) ;
  • Lee, Jaeha (Department of Biology, Chungnam National University) ;
  • Ahn, Kee-Jeong (Department of Biology, Chungnam National University)
  • 김낭희 (목포대학교 환경교육과) ;
  • 최세웅 (목포대학교 환경교육과) ;
  • 이재석 (충남대학교 생물과학과) ;
  • 이재하 (충남대학교 생물과학과) ;
  • 안기정 (충남대학교 생물과학과)
  • Received : 2018.05.18
  • Accepted : 2018.06.04
  • Published : 2018.06.30

Abstract

Agricultural landscapes in Korea comprise a large cultivation area of rice paddies, other crops, and forests which surround the cropland and the farmers' residential village. The forests in this agricultural landscape play important roles as ecological corridors and refuges for plants and animals in this agroecosystem. The present study investigated the spatial and temporal diversity patterns among these components of the agroecosystem to provide baseline data that describes how fauna change in the studies system. Insect sampling was conducted at four sites in two regions, Chungcheong (Ockcheon and Geumsan) and Jeonnam (Younggwang and Haenam), from March to August of 2014, using an UV light trap for moths and five pitfall traps for beetles. Beetles comprised 225 species and 2,457 individuals in 35 families, while moths consisted of 141 species and 403 individuals in 17 families. Beetles showed higher diversity in Chungcheong than Jeonnam, while moths showed no difference in diversity between regions. Forests showed the highest number of species and individuals, followed by orchards and rice paddies. The food preference of beetles showed that forests contained a higher proportion of herbivores, while orchards and rice paddies had a higher proportion of carnivores. Temporal changes in moths in the two regions were synchronous, while those of beetles were nonsynchronous. Moths increased from spring to summer across all habitats, especially in rice paddies during summer. Beetles also increased from spring to summer in orchards and rice paddies, although the beetles in the forests increased in the middle of summer. A detailed and long-term study is needed to reveal the causes of different diversity patterns of taxa among the different habitats within the agroecosystems.

한국 농촌 경관은 논과 밭을 중심으로 넓은 경작지와 함께 숲이 어우러진 다소 복잡한 경관구조를 나타내고 있으며 숲은 농경지와 산림 서식지 간 생물 이동과 종자 전파를 원활하게 하는 생태통로와 징검다리 역할을 함으로써 피난처 역할을 수행하는데, 이 연구에서는 곤충 개체군의 이동 현상을 파악하기 위한 기초연구로 각 서식지 간 다양성 양상을 시공간적으로 살펴보았다. 조사는 충남(금산)과 충북(옥천), 전남(해남, 영광) 등 4지역에서 2014년 3월부터 8월까지 실시하였으며 나방은 자외선등 트랩을 딱정벌레는 함정트랩을 설치하여 채집하였다. 딱정벌레는 35과 225종 2,457개체, 나방은 17과 141종 403개체가 채집되었으며 지역별로는 딱정벌레 종 수와 개체수 모두 충청지역에서 높은 값을 나타내었으나 나방은 두 지역간 차이를 나타내지 않았다. 서식지 유형별 종 수와 개체수 양상은 산림에서 가장 높았고 다음으로 과수원, 논 순이었다. 서식지 간 식성의 차이를 살펴본 결과 산림에서는 초식성곤충이 과수원과 논에서는 포식성 곤충 출현비율이 높은 경향을 나타냈다. 나방은 전남과 충청의 출현이 동일한 반면 딱정벌레는 시간차이가 있는 것으로 나타났으며 서식지별로 숲, 과수원, 논 등에서 모두 봄과 여름에 증가하는 추세를 보였으나, 논에서는 늦여름에 많은 개체가 확인되었다. 딱정벌레 역시 나방과 유사하였지만 숲에서 과수원이나 논보다 늦게 개체수가 늘어나는 양상을 나타내었다. 추후 농경생태계 내 다른 서식지 형태 사이에서 분류군의 출현양상에 대한 장기간 조사를 통하여 이번 연구에서 얻어진 결과에 대한 면밀한 검토가 필요할 것으로 생각한다.

Keywords

References

  1. Aebischer NJ. 1991. Twenty years of monitoring invertebrates and weeds in cereal fields in Sussex. pp. 305-331. In The Ecology of Temperate Cereal Fields (Firbank LG, N Carter, JF Darbyshire and GR Potts eds.). Blackwell Scientific Publications, Oxford.
  2. Altieri MA and LL Schmidt. 1986. The dynamics of colonizing arthropod communities at the interface of abandoned, organic and commercial apple orchards and adjacent woodland habitats. Agric. Ecosyst. Environ. 16:29-43. https://doi.org/10.1016/0167-8809(86)90073-3
  3. An JS and SW Choi. 2013. Forest moth assemblages as indicators of biodiversity and environmental quality in a temperate deciduous forest. Eur. J. Entomol. 110:509-517. https://doi.org/10.14411/eje.2013.067
  4. Bouchard P, Y Bousquet, A Davies, M Alonso-Zarazaga, J Lawrence, C Lyal, A Newton, C Reid, M Schmitt, A Slipinski and A Smith. 2011. Family-group names in Coleoptera (Insecta). ZooKeys 88:1-972. https://doi.org/10.3897/zookeys.88.807
  5. Burford LS, MJ Lacki and CV Jr Covell. 1999. Occurrence of moths among habitats in a mixed mesophytic forest: implications for management of forest bats. Forest Sci. 45:323-329.
  6. Chamberlain DE, RJ Fuller, RGH Bunce, JC Duckworth and M Shrubb. 2000. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37:771-778. https://doi.org/10.1046/j.1365-2664.2000.00548.x
  7. Choe LJ, KJ Cho, SK Choi, SH Lee, MK Kim, HS Bang, J Eo and MH Kim. 2016. Effects of landscape and management on ground-dwelling insect assemblages of farmland in Jeju Island, Korea. Entomol. Res. 46:36-44. https://doi.org/10.1111/1748-5967.12146
  8. Donald PF, RE Green and MF Heath. 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proc. R. Soc. Lond. B Biol. Sci. 268:25-29. https://doi.org/10.1098/rspb.2000.1325
  9. Foley JA, R DeFries, GP Asner, C Barford, G Bonan, SR Carpenter, FS Chapin, MT Coe, GC Daily, HK Gibbs, JH Helkowski, T Holloway, EA Howard, CJ Kucharik, C Monfreda, JA Patz, IC Prentice, N Ramankutty and PK Snyder. 2005. Global consequences of land use. Science 309:570-574. https://doi.org/10.1126/science.1111772
  10. Garbach K, JC Milder, M Montenegro, DS Karp and FAJ De-Clerck. 2014. Biodiversity and ecosystem services in agroecosystems. Encyclopedia of Agriculture and Food Systems 2:21-40.
  11. Holloway JD. 1985. Moths as indicator organisms for categorizing rain-forest and monitoring changes and regeneration processes. pp. 235-242. In Tropical Rain-Forest (Chadwick AC and SL Sutton eds.). The Leeds Symposium, Special Publ. of the Leeds Philosophical and Literary Society, Leeds.
  12. Jung JK, YJ Park, SK Lee, HS Lee, YG Park, JH Lee, TY Choi and DG Woo. 2016. Response of ground beetles (Coleoptera: Carabidae) to vegetation structure in wildlife crossings. Korean J. Environ. Ecol. 30:185-198. https://doi.org/10.13047/KJEE.2016.30.2.185
  13. Kang BH, JH Lee and JK Park. 2009. The study on the characteristics of ground beetle (Coleoptera: Carabidae) community for conservation of biodiversity in agricultural landscape. Korean J. Environ. Ecol. 23:545-552.
  14. Kang WM, IS Koh, CR Park and DW Lee. 2012. An analysis of changes in forest fragmentation and morphology in surrounding landscapes of Maeulsoops and Jinan-gun. Korean J. Environ. Ecol. 26:941-951.
  15. Kim JH. 2001. The Coleopteran of Korea. Kyo-Hak, Seoul. p. 495. (in Korean)
  16. Kim SS, EA Beljaev and SH Oh. 2001. Illustrated catalogue of Geometridae in Korea (Lepidoptera: Geometrinae, Ennominae). Korea Research Institute of Bioscience and Biotechnology & Center for Insect Systematics, Daejeon.
  17. Kim SS, SW Choi, JC Sohn, T Kim and BW Lee. 2016. The geometrid moths of Korea (Lepidoptera: Geometridae). Junghaengsa, Seoul. p. 499.
  18. Kitching RL, AG Orr, L Thalib, H Mitchell, MS Hopkins and AW Graham. 2000. Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J. Appl. Ecol. 37:284-297. https://doi.org/10.1046/j.1365-2664.2000.00490.x
  19. Koivula MJ. 2011. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100:287-317. https://doi.org/10.3897/zookeys.100.1533
  20. Kononenko VS, SB Ahn and L Ronkay. 1998. Illustrated Catalogue of Noctuidae in Korea (Lepidoptera). Insects of Korea 3. KRIBB & CIS, Junghaengsa, Seoul. p. 507.
  21. Kromp B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 74:187-228. https://doi.org/10.1016/S0167-8809(99)00037-7
  22. Lawrence JF, AM Hastings, MJ Dallwitz, TA Paine and EJ Zurcher. 2000. Beetles of the world. Version 1.0. CSIRO, Collingwood, Victoria.
  23. Liu Y, JC Axmacher, C Wang, L Li and Z Yu. 2010. Ground beetles (Coleoptera: Carabidae) in the intensively cultivated agricultural landscape of Northern China - implications for biodiversity conservation. Insect Conserv. Divers. 3:34-43. https://doi.org/10.1111/j.1752-4598.2009.00069.x
  24. Lovei GL and KD Sunderland. 1996. Ecology and behaviour of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41:231-256. https://doi.org/10.1146/annurev.en.41.010196.001311
  25. Matson PA, WJ Parton, AG Power and MJ Swift. 1997. Agricultural intensification and ecosystem properties. Science 277:504-509. https://doi.org/10.1126/science.277.5325.504
  26. Park CR, JH Shin and DW Lee. 2006. Bibosoop: A unique Korean biotope for cavity nesting birds. J. Ecol. Field Biol. 29: 75-84.
  27. R Development Core Team. 2017. R: A language and environment for statistical computing. Ver. 3.4.3. R Foundation for Statistical Computing. URL http://www.R-project.org/.
  28. Ricketts TH, GC Daily, PR Ehrlich and JP Fay. 2001. Countryside biogeography of moths in a fragmented landscape: Biodiversity in native and agricultural habitats. Conserv. Biol. 15:378-388. https://doi.org/10.1046/j.1523-1739.2001.015002378.x
  29. Rockstrom J, W Steffen, K Noone, A Persson, FS Chapman III, EF Lambin, TM Lenton, M Scheffer, C Folke, HJ Schellnhuber, B Nykvist, CA de Witt, T Hughes, S van der Leeuw, H Rodhe, S Sorlin, PK Snyder, R Costanza, U Svedin, M Falkenmark, L Karlberg, RW Corell, VJ Fabry, J Hansen, B Waler, D Liverman, K Richardson, P Crutzen and JA Foley. 2009. A safe operating space for humanity. Nature 461:472-475. https://doi.org/10.1038/461472a
  30. Shin YH. 2001. Coloured illustrations of the moths of Korea. Academybook, Seoul.
  31. Soderstom B, B Svensson, K Vessby and A Glimster. 2001. Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers. Conserv. 10:1839-1863. https://doi.org/10.1023/A:1013153427422
  32. Sotherton NW. 1998. Land-use changes and the decline of farmland wildlife: an appraisal of the set-aside approach. Biol. Conserv. 83:259-268. https://doi.org/10.1016/S0006-3207(97)00082-7
  33. Stork NE, J McBroom, C Gely and AJ Hamilton. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. 112:7519-7623. https://doi.org/10.1073/pnas.1502408112
  34. Summerville KS, LM Ritter and TO Crist. 2004. Forest moth taxa as indicators of lepidopteran richness and habitat disturbance: a preliminary assessment. Biol. Conserv. 116:9-18. https://doi.org/10.1016/S0006-3207(03)00168-X
  35. Tscharntke T, AM Klein, A Kruess, I Steffan-Dewenter and C Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management. Ecol. Lett. 8:857-874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
  36. Van Emden HF. 1965. The role of uncultivated land in the biology of crop pests and beneficial insects. Sci. Horticult. 17: 121-136.
  37. Westphal C, I Steffan-Dewenter and T Tscharntke. 2003. Mass flowering crops enhance densities at a landscape scale. Ecol. Lett. 6:961-965. https://doi.org/10.1046/j.1461-0248.2003.00523.x
  38. Zhang W, TH Ricketts, C Kremen, K Carney and SM Swinton. 2007. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64:253-260. https://doi.org/10.1016/j.ecolecon.2007.02.024