DOI QR코드

DOI QR Code

Influencing Factor Analysis on Groundwater Level Fluctuation Near River

지반 및 수문특성을 고려한 하천인근 지역의 지하수위 변동 영향인자 분석

  • Kim, Incheol (School of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Junhwan (School of Civil and Environmental Engineering, Yonsei University)
  • 김인철 (연세대학교 사회환경시스템공학과) ;
  • 이준환 (연세대학교 사회환경시스템공학과)
  • Received : 2018.06.19
  • Accepted : 2018.06.25
  • Published : 2018.06.30

Abstract

Groundwater level (GWL) fluctuation, which can occur due to several artificial and natural reasons, causes reduction of bearing capacity of foundation structures and can lead settlement of ground. As a result, GWL fluctuation affects stability and serviceability of entire building. However, in many case, GWL is considered as fixed value that obtain from geotechnical investigations. That is reason that GWL fluctuation is considered as area of non-geotechnical engineering. In present study, factors causing GWL fluctuation were analyzed at urban and rural area as preliminary research of quantification of GWL fluctuation. GWL varies according to hydrological and geographical characteristics. Also, the influence factors are largely affected by hydrological and geographical characteristics.

지하수위는 자연적 또는 인위적 요인들로 시 공간적 변동성을 나타내게 된다. 지반공학적 측면에서 지하수위의 변동성은 기초구조물의 지지력 감소 및 추가적인 침하 등을 발생시킴으로써 전체 구조물의 안정성 혹은 사용성에 영향을 미칠 수 있다. 설계과정에서 적용되는 지하수위는 지반조사 과정 중 현장시험을 통해 측정된 고정 수위를 기반으로 결정되나, 실질적으로 강우조건, 지반의 종류, 도심 포장률 등 다양한 영향인자에 따라 연중으로 변동하는 패턴을 보이게 된다. 본 연구에서는 대부분 인간활동의 영역이 되어 있는 하천인근 지역을 대상으로, 지하수위 변동성과 이에 대한 영향인자를 조사 분석하고자 하며, 이는 궁극적으로 보다 합리적 지반구조물 설계가 가능토록 하기 위함이다. 지하수위 변동이 크게 발생할 것으로 예상되는 도심지역과 도외지역을 대상으로 지하수위 변동에 관한 영향요소를 분석하였다. 지하수위 변동은 도심지역과 도외지역의 수문 및 지질 특성에 따라 상이한 양상을 보였으며 변동에 영향을 미치는 인자 또한 대상지역의 지질 특성에 따라 다른 것으로 나타났다.

Keywords

References

  1. Ausilio, E. and Conte, E. 2005. Influence of groundwater on the bearing capacity of shallow foundations. Canadian Geotechnical Journal 42: 663-672. https://doi.org/10.1139/t04-084
  2. Bansal, R. and Das, S. 2010. An analytical study of water table fluctuations in unconfined aquifers due to varying bed slopes and spatial location of the recharge basin. Journal of Hydrologic Engineering 15(11): 909-917. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000267
  3. Battisti, D.S. and Naylor, R.L. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323: 240-244. https://doi.org/10.1126/science.1164363
  4. Chesnaux, R., Chapuis, R., and Molson, J. 2006. A new method to characterize hydraulic short-circuits in defective borehole seals. Groundwater 44(5): 676-681.
  5. Coulibaly, P., Anctil, F., Aravena, R., and Bobee, B. 2001. Artificial neural network modeling of water table depth fluctuations. Water Resources Research 37(4): 885-896. https://doi.org/10.1029/2000WR900368
  6. ESIS (Environmental Spatial Information Service), https://egis.me.go.kr
  7. GIDS (Geotechnical Information DB System), http://surveycp.seoul.go.kr
  8. Guttman, N.B. (1999). Accepting the standardized precipitation index: a calculation algorithm. Journal of the American Water Resources Association 35(2): 311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  9. Hoque, A.M., Hoque, M.M., and Ahmed, K.M. 2007. Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeology Journal 15: 1523-1534. https://doi.org/10.1007/s10040-007-0226-5
  10. HRBEO (Han River Basin Environmental Office) 2013. Water environment management plan for Han River, Seoul (2008-2012), Ministry of Environment, Seoul, pp. 33-37 (in Korean)
  11. HRFCO (Han River Flood Control Office), https://www.hrfco.go.kr
  12. Izady, A., Davary, K., Alizadeh, A., Ghahraman, B., Sadeghi, M., and Moghaddamnia, A. 2012. Application of panel-data modeling to predict groundwater levels in the Neishaboor Plainm Iran. Hydrogeology Journal 20: 435-447. https://doi.org/10.1007/s10040-011-0814-2
  13. Kim, I., Park, D., Kyung, D., Kim, G., Kim, S., and Lee, J. 2016. Comparative influences of precipitation and river stage on groundwater levels in near-river areas. Sustainability 8(1): 1-16. https://doi.org/10.3390/su8010001
  14. Kim, Y.Y., Lee, K.K., and Sung, I.H. (1998). Groundwater systems in Seoul area: analysis of hydraulic properties. The Journal of Engineering Geology 8(1): 51-73. (in Korean)
  15. KMA (Korea Meteorological Administration) 2013. Climate change report in Korea Peninsular, Seoul, pp. 21-22 (in Korean)
  16. KMA (Korea Meteorological Administration), https://web.kma.go.kr
  17. Lu, J., Vecchi, G.A., and Reichler, T. 2007. Expansion of the Hadley cell under global warming. Geophysical Research Letters 34: L06805.
  18. Makriddakis, S. Wheelwright S.C., and Hyndman R.J., 2008. Forecasting methods and applications. 3rd edn. Wiley, Singapore 656 pp.
  19. NGIC (National Groundwater Information & Service Center), https://www/gims.go.kr
  20. Park, D., Kim, I., Kim, G., and Lee, J. 2017. Groundwater effect factors for the load-carrying behavior of footings from hydraulic chamber load tests. Geotechnical Testing Journal 30(3): 440-451.
  21. Park, J., Choi, Y., Kim, D., Park, C., and Yang, J. 2005. Development of groundwater dam operation index using daily precipitation data. Workshop of Korea Water Resources Association, 60. (in Korean)
  22. Pauwels V., Verhoest, N., and De Troch, F. 2002. A metahillslope model based on an analytical solution to a linearized Boussinesq equation for temporally variable recharge rates. Water Resource Research 38(12): 1297 (33-1-14).
  23. Sahoo, S. and Jha, M.K. 2013. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. Hydrogeology Journal 21: 1865-1887. https://doi.org/10.1007/s10040-013-1029-5
  24. Schmertmann, J.H. 1970. Static cone to compute static settlement over sand. Journal of the Soil Mechanics and Foundations Division 96(3): 1011-1043.
  25. Serrano S.E. and Workman, S.R. 1998. Modeling transient stream/aquifer interaction with the non-linear Boussinesq equation and its analytical solution. Journal of Hydrology 206: 145-255.
  26. Shahriar, M.A., Sivakugan, N., and Das, B.M. 2012. Settlements of shallow foundations in granular soils due to rise of water table: A critical review. International Journal of Geotechnical Engineering 6(4): 515-524. https://doi.org/10.3328/IJGE.2012.06.04.515-524
  27. Terzaghi. K., Peck, R.B., and Mesri, G. 1996. Soil mechanics in engineering practice, 3rd Ed.,Wiley, NewYork.
  28. Wilhite, D.A. and Glants, M.H. 1985. Understanding the drought phenomenon: the role of definitions Water International 10: 110-120.
  29. Winter, T.C. 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeology Journal 7: 28-45. https://doi.org/10.1007/s100400050178
  30. Yang, J. and Kim, N. 2011. The correlation between the moving average of precipitation and groundwater level in Korea. KSCE Journal of Civil Engineering, 31(3B), 265-276. (in Korean)
  31. Yasuhara, K., Murakami, S., Mimura, N., Komine, H., and Recio, J. 2007. Influence of global warming on coastal infrastructural instability. Sustainability Science 2: 13-25. https://doi.org/10.1007/s11625-006-0015-4