DOI QR코드

DOI QR Code

A Validation Study on the Reinforcement Effect of Reservoir Grouting by Surface Wave Survey

표면파탐사를 이용한 저수지 제체 그라우팅 보강효과 검증 연구

  • Received : 2018.05.25
  • Accepted : 2018.06.19
  • Published : 2018.06.30

Abstract

In order to assess the safety diagnosis and grouting reinforcement effect of old reservoir facility, local governments and public offices mainly use electrical resistivity survey. However, electrical resistivity survey is a qualitative evaluation that varies the resistivity value by various exploration conditions. It is also difficult to grasp the stiffness change directly related to the stability of reservoir, thus an electrical resistivity survey is not applicable to continuous stability monitoring after grouting. The purpose of this study is to investigate and validate the quantitative evaluation of reinforcement effect of reservoir with cement grouting through shear velocity (Vs), which is closely related to the stiffness (${\mu}$) of the ground. This study was carried out on two reservoir facilities. The reinforcement effect was evaluated by comparing the permeability test, standard penetration test, down-hole test and MASW(Multi-channel Analysis of Surface wave) survey before and after cement grouting. Shear wave velocity changes before and after grouting were analyzed by phase velocity difference and inversion analysis, respectively, and the reliability of the analytical results was evaluated by comparing with field test results. Shear wave velocity increases to 5~10% in case of the D levee, and 10~20% in the levee of H reservoir. These results are showed similar pattern to the field test results.

노후 제체의 안전진단 및 그라우팅 보강효과 판정을 위해 지자체와 관공서는 전기비저항탐사를 주로 활용하고 있으나, 전기비저항탐사는 다양한 탐사조건에 의해 비저항 값이 변하는 정성적 평가이다. 또한 제체의 안정성과 직결되는 강성변화(stiffness change)를 파악하기 어려워, 그라우팅 시공 후 지속적인 안정성 모니터링에는 그 적용성이 떨어진다. 이에 본 연구는 지반의 강성(${\mu}$)과 밀접한 관계가 있는 전단파속도(Vs, shear velocity)를 통해 시멘트 그라우팅 시공에 따른 제체의 정량적인 보강효과에 대한 검증방안을 연구하였고, 검증방안에 대한 적용성을 검토하였다. 본 연구는 2개소의 제체를 대상으로 수행되었으며, 시멘트 그라우팅 시공 전 후의 투수시험, 표준관입시험, 다운홀시험(Down-hole Test) 및 MASW(Multi-channel Analysis of Surface wave) 탐사결과를 대비 분석하여 보강효과를 평가하였다. 그라우팅 시공 전 후 전단파속도 변화는 위상속도차이(phase velocity difference) 및 역산해석(inversion analysis)을 통해 각각 분석하였으며, 현장시험 결과와의 비교를 통해 분석결과의 신뢰성을 평가하였다. D 제방의 경우 약 5~10%, H 제방은 약 10~20% 이상의 속도증가가 나타났으며, 현장시험결과와 유사한 양상의 결과를 나타냈다.

Keywords

References

  1. Cho, I.K., Kang, H.J., Kim, K.J., 2006, Distortion of resistivity data due to the 3D geometry of embankment dams, geophysics and geophysical exploration, 9(4), 291-298 (in Korean with English abstract).
  2. Imai, T., Yoshimura, Y., 1970, Elastic wave velocity and soil properties in soft soil, Tsuchito-Kiso, 18 (1) (in Japanese).
  3. Imai, T., 1977, P and S wave velocities of the ground in Japan, in: Preceeding of IX International Conference on Soil Mechanics and Foundation Engineering, 127-132 (in Japanese)
  4. Imai, T., Tonouchi, K., 1982, Correlation of N-value with S-wave velocity and shear modulus, Proceedings of the 2nd European symposium on penetration testing, 57-72.
  5. Kim, J.H., Song, Y.H., Jung, S.H., 2000, Imaging techniques of substructures using electric and electromagnetic exploration, Korean Society of Earth and Exploration Geophysicists and Korean Geotechnical Society Geological investigation committee, 121-154 (in Korean).
  6. Kim, K.B., Park, S.Y., Jang, J.H., Kim, J.H., 2015, Analysis of Dam Leak Environment and Grout Reinforcement Effect of Reservoir using the Electrical Resistivity Method, 2015 Korean Geo-Environmental Society Conference(15th Anniversary), 215-218 (in Korean with English abstract).
  7. Korean Geotechnical Society, 1998, Manual for zonation on seismic geotechnical hazards, 28 (in Korean).
  8. Korean Geotechnical Society, 1998, N-Value and C, $\phi$ method of application, 102 (in Korean).
  9. Ministry of Agriculture, Food and Rural Affairs(MAFRA), 2014, Agriculture, Food And Rural Affairs Major Statistics Data (in Korean).
  10. Oh, S.H., Suh, B.S., 2008, Safety assessment of embankment by analysis of electrical properties. The Journal of Engineering Geology, 18(3), 245-255 (in Korean with English abstract).
  11. Oh, S.H., Sun, C.G., 2004, Analysis of geophysical and geotechnical SPT data for the safety evaluation of fill dam. Journal of the Korean Geophysical Society, 7(3), 171-183 (in Korean with English abstract).
  12. Ohba, S., Toriumi, I., 1970, Dynamic response characteristics of Osaka plain, in: Proceeding of the Annual Meeting AIJ, Tokyo, Japan (in Japanese).
  13. Okamoto, T., Kokusho, T., Yoshida, Y., Kusuonoki, K., 1989, Comparison of surface versus subsurface wave source for P-S logging in sand layer, Proceeding 44th Annual Conference JSCE, 3:996-997 (in Japanese).
  14. Park, C.B., Miller, R.D., Xia, J., Ivanov, J., 2007, Multichannel analysis of surface waves (MASW)-active and passive methods, The Leading Edge, 26(1), 60-65. https://doi.org/10.1190/1.2431832
  15. Park, S.G., Song, S.H., Choi, J.H., Choi, B.G., Lee, B.H., 2002, Applicability of geophysical prospecting for water leakage detection in water utilization facilities, Korean Society of Earth and Exploration Geophysicists Special symposium(4th), 179-195 (in Korean with English abstract).
  16. Song, S.H., Yong, H.H., Lee, G.S., Woo, M.H., 2006, Verification of Reinforcement with Grouting Materials in Reservoir Dike using Electrical Resistivity Tomography, Annual Conference of the Korean Society of Earth and Exploration Geophysicists, 73-78 (in Korean with English abstract).
  17. Xia, J., Park, C.B., Miller, R.D., 1999, Multichannel analysis of surface waves, Geophysics, 64(3), 800-808. https://doi.org/10.1190/1.1444590

Cited by

  1. 노후 저수지 보강을 위한 환경 친화적 그라우팅 주입재 적용에 관한 기초연구 vol.21, pp.2, 2018, https://doi.org/10.14577/kirua.2019.21.2.35
  2. 결합재 및 사용수 변화에 따른 노후저수지 보강용약액주입공법 적용에 관한 연구 vol.21, pp.4, 2018, https://doi.org/10.14577/kirua.2019.21.4.45
  3. 순환자원 활용 지반차수재의 노후저수지 보강 적용사례 및 성능검증에 관한 연구 vol.22, pp.3, 2018, https://doi.org/10.14577/kirua.2020.22.3.17