DOI QR코드

DOI QR Code

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image

무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가

  • 윤공현 (연세대학교 공학연구원) ;
  • 김덕인 ((주)지오스페이스) ;
  • 송영선 (인하공업전문대학 항공지리정보과)
  • Received : 2018.05.04
  • Accepted : 2018.06.27
  • Published : 2018.06.30

Abstract

RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.

본 연구에서는 무인항공기(UAV:Unmanned Aircraft Vehicle)의 입체영상을 이용하여 사진측량학 원리를 적용하므로서 수치표고모형, 실감정사영상 및 3차원 수치 데이터를 제작 및 평가를 수행하였다. 스테레오 입체시를 수행하기 위해서는 수치도화기(DPW:Digital Photogrammetric Workstation)를 필수적으로 이용해야 하는데 본 연구에서는 최근 산자부에서 개발된 3차원 공간정보 제작시스템인 GEOMAPPER 1.0을 사용하였다. 무인항공기의 중복된 두 영상을 이용하여 입체시 생성하기 위해서는 카메라의 내부표정요소와 외부표정요소가 계산되어야 하며, 정확한 입체시를 위해서 비항측용 일반 카메라의 렌즈왜곡에 대한 정확한 보정이 필수적이다. 렌즈의 왜곡보정 및 지상기준점을 이용한 표정요소의 결정은 상업용 소프트웨어인 PhotoScan 1.4를 사용하였다. 무인항공기는 케이로보틱스의 고정익 장비(KD-2)를 사용하였고 항공삼각측량과정을 통하여 최종적으로 실감정사영상을 생성하고 수치지형도를 일부 제작하여 수치도화의 오차분석을 수행하였다. 그 결과 입체도화 방식으로 축척 1:1/2,500~1/3,000 수치지형도의 제작 가능성을 확인 할 수 있었다.

Keywords

References

  1. Kim KD, Lee DG, Yu YG, Lee HJ. 2017. Processing of Aerial Photographic Image Using Unmanned Aerial Photogrammetry Process and Revision/Update Method of Digital Map of Small Change Area. Journal of the Korean Society for Geospatial Information Science. 25(4):15-24. https://doi.org/10.7319/kogsis.2017.25.4.015
  2. Kim DI, Song YS, Kim G, Kim CW. 2014. A Study on the Application of UAV for Korean Land Monitoring. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 32(1):29-38. https://doi.org/10.7848/ksgpc.2014.32.1.29
  3. Kim MG, Jung KY. 2016. Applicability analysis of Drone Photogrammetry for Updating Digital Maps. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology. 6(8):603-610. https://doi.org/10.14257/AJMAHS.2016.10.04
  4. Kim HM, Jang SW, Yoon HJ. 2017. Utilization of Unmanned Aerial Vehicle(UAV) Image for Detection of Algal Bloom in Nakdong River. The Journal of the Korea Institute of Electronic Communication Sciences. 12(3):457-464. https://doi.org/10.13067/JKIECS.2017.12.3.457
  5. Lee KW. 2017. Extraction of Road Information Based on High Resolution UAV Image Processing for Autonomous Driving Support. Journal of the Korea Academia-Industrial cooperation Society. 18(8):355-360. https://doi.org/10.5762/KAIS.2017.18.8.355
  6. Lee KW, Park JK. 2016. Construction and Analysis of Geospatial Information about Submerged District Using Unmanned Aerial System. Journal of Digital Convergence. 14(2):225-230.
  7. Lim SB, Seo CW, Yun HC. 2015. Digital Map Updates with UAV Photogrammetric Methods. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 33(5):397-405. https://doi.org/10.7848/ksgpc.2015.33.5.397
  8. Choi TY, Moon HG, Cha JG. 2017. Analysis of Surface Temperature on Urban Green Space Using Unmanned Aerial Vehicle Images* -A Case of Sorasan Mt. Nature Garden, Iksan, South Korea-. Journal of the Korean Association of Geographic Information Studies. 20(3):90-103. https://doi.org/10.11108/KAGIS.2017.20.3.090
  9. National Land Information Platform. 2014. Vertical Reference Transformation [Internet]. [http://map.ngii.go.kr]. Last accessed 18 June 2018.
  10. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., and Szeliski, R., 2009. Building Rome in a day. In: 2009 IEEE 12th International Conference on Computer Vision, Sept. 29 2009-Oct. 2, pp.7-79.
  11. Calonder, M., Lepetit, V., Strecha, C., and Fua, P., 2010. BRIEF: binary robust independent elementary features, in: K. Daniilidis, P. Maragos, N. Paragios (Eds.), Computer Vision-ECCV 2010, Lecture Notes in Computer Science, vol. 6314, Springer, Berlin Heidelberg, pp. 778-792.
  12. Colomina, I. and Monila, P., 2014. Unmanned aerial systems for photogrammetry and remote sensing: A review, ISPRS Journal of Photogrammetry and Remote Sensing, 92: 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
  13. Eisenbeiss, H., 2009. UAV Photogrammetry. Ph.D. Thesis. Institut fur Geodesie und Photogrammetrie, ETH-Zurich. Zurich, Switzerland.
  14. Fiorillo, F., Jimenez, B., Remondino, F., and Barba, S., 2012. 3D surveying and modeling of the archaeological area of Paestum, Italy Virtual Archaeol. Rev., 4: 55-60.
  15. Gini, R., Pagliari, D., Passoni, D., Pinto, L., Sona, G., and Dosso, P., 2013. UAV photogrammetry: block triangulation comparisons ISPRS-Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci. pp. 157-162.
  16. Goncalves, J.A., and R. Henriques, 2015. UAV photogrammetry for topographic monitoring of coast areas, ISPRS Journal of Photogrammetry and Remote Sensing, 104:101-111 https://doi.org/10.1016/j.isprsjprs.2015.02.009
  17. Lowe, D., 2004. Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60: 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  18. Morel, J. and Yu, G., 2009. ASIFT: A new framework for fully affine invariant image comparison SIAM Journal on Imaging Sciences, 2, pp. 438-469. https://doi.org/10.1137/080732730
  19. Qin, R., Grun, A., and Huang, X., 2013. UAV project-building a reality-based 3D model, Coordinates, 9: 18-26.
  20. Snavely, N., Seitz, S.M., and Szeliski, R., 2008. Modeling the world from internet photo collections Int. J. Comput. Vision, 80: 189-210. https://doi.org/10.1007/s11263-007-0107-3
  21. Strecha, C., Bronstein, A., Bronstein, M., and Fua, P., 2012, LDAHash: Improved matching with smaller descriptors IEEE Trans. Pattern Anal. Mach. Intell., 34: 66-78. https://doi.org/10.1109/TPAMI.2011.103
  22. Tahar, K.N., Ahmad, A., and Akib, W.A.A.W.M., 2011. UAV-based stereo vision for photogrammetric survey in aerial terrain mapping, Proc. of International Conference on Computer Applications and Industrial Electronics, Penang, Malaysia, Dec. 4-7, pp. 443-447.
  23. Van Blyenburgh, P., 2013. 2013-2014 RPAS Yearbook: Remotely Piloted Aircraft Systems: The Global Perspective 2013/2014. Technical Report. UVS International. Paris, France.

Cited by

  1. 지상기준점 선점 위치에 따른 DSM 높이 정확도 분석 vol.51, pp.1, 2018, https://doi.org/10.22640/lxsiri.2021.51.1.125