DOI QR코드

DOI QR Code

Evaluation of the Effectiveness of Emission Control Measures to Improve PM2.5 Concentration in South Korea

미세먼지 농도 개선을 위한 배출량 저감대책 효과 분석

  • Kim, Eunhye (Department of Environmental & Safety Engineering, Ajou University) ;
  • Bae, Changhan (Department of Environmental & Safety Engineering, Ajou University) ;
  • Yoo, Chul (National Institute of Environmental Research) ;
  • Kim, Byeong-Uk (Georgia Environmental Protection Division) ;
  • Kim, Hyun Cheol (Air Resources Laboratory, National Oceanic & Atmospheric Administration) ;
  • Kim, Soontae (Department of Environmental & Safety Engineering, Ajou University)
  • 김은혜 (아주대학교 환경안전공학과) ;
  • 배창한 (아주대학교 환경안전공학과) ;
  • 유철 (국립환경과학원 대기환경연구과) ;
  • 김병욱 (미국조지아주환경청) ;
  • 김현철 (미국국립해양대기청) ;
  • 김순태 (아주대학교 환경안전공학과)
  • Received : 2018.01.23
  • Accepted : 2018.06.18
  • Published : 2018.06.30

Abstract

On September 26, 2017, South Korean government has established the Particulate Matter Comprehensive Plan to improve Korean air quality by 2022, which aims to reduce annual mean surface $PM_{2.5}$ concentration to $18{\mu}g/m^3$. This study demonstrates quantitative assessment of predicted $PM_{2.5}$ concentrations over 17 South Korean regions with the enforcement of the comprehensive plan. We utilize the Community Multi-scale Air Quality (CMAQ) modeling system with CAPSS 2013 and CREATE 2015 emissions inventories. Simulations are conducted for 2015 with the base emissions and the planned emissions, and impacts from model biases are minimized using the RRF (Relative Response Factor). With effective emission reduction scenario suggested by the comprehensive plan, the model demonstrates that the surface $PM_{2.5}$ concentration may decrease by $6{\mu}g/m^3$ ($23{\mu}g/m^3{\rightarrow}17{\mu}g/m^3$) and $7{\mu}g/m^3$ ($25{\mu}g/m^3{\rightarrow}18{\mu}g/m^3$) for Seoul and South Korea, respectively. The number of high $PM_{2.5}$ days(daily mean>$25{\mu}g/m^3$) also decreases from 21 days to 4 days.

Keywords

References

  1. Bae, C., You, C., Kim, B.-U., Kim, H.C., Kim, S. (2017a) $PM_{2.5}$ simulations for the Seoul Metropolitan Area: (III) application of the modeled and observed $PM_{2.5}$ ratio on the contribution estimation, Journal of Korean Society for Atmospheric Environment, 33(5), 445-457. (In Korean with English abstract) https://doi.org/10.5572/KOSAE.2017.33.5.445
  2. Bae, C., Kim, E., Kim, B.-U., Kim, H.C., Woo, J.H., Moon, K.J., Shin, H.J., Song, I.H., Kim, S. (2017b) Impact of Emission Inventory Choices on $PM_{10}$ Forecast Accuracy and Contributions in the Seoul Metropolitan Area, Journal of Korean Society for Atmospheric Environment, 33(5), 497-514. (In Korean with English abstract) https://doi.org/10.5572/KOSAE.2017.33.5.497
  3. Benjey, W., Houyoux, M., Susick, J. (2001) Implementation of the SMOKE emission data processor and SMOKE tool input data processor in Models-3, US EPA.
  4. Binkowski, F.S., Roselle, S.J. (2003) Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description, Journal of Geophysical Research, 108(D6).
  5. Boylan, J.W., Russell, A.G. (2006) PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmospheric Environment, 40, 4946-4959. https://doi.org/10.1016/j.atmosenv.2005.09.087
  6. Byun, D.W., Schere, K.L. (2006) Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Applied Mechanics Reviews, 59(2), 51-77. https://doi.org/10.1115/1.2128636
  7. Carter, W.P.L. (1999) Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment, Report to California Air Resources Board. Contracts 92-329 and 95-308.
  8. Chen, F., Dudhia, J. (2001) Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, Monthly Weather Review, 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  9. Chou, M.D., Suarez, M.J. (1994) An efficient thermal infrared radiation parameterization for use in general circulation models, National Aeronautics and Space Administration, Goddard Space Flight Center, 85pp.
  10. Emery, C., Liu, Z., Russell, A.G., Odman, M.T., Yarwood, G., Kumar, N. (2017) Recommendations on statistics and benchmarks to assess photochemical model performance, Journal of the Air and Waste Management Association, 67(5), 582-598. https://doi.org/10.1080/10962247.2016.1265027
  11. Guenther, C.C. (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, 6, 3181-3210. https://doi.org/10.5194/acp-6-3181-2006
  12. Hong, S.Y., Dudhia, J., Chen, S.H. (2004) A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation, Monthly Weather Review, 132 (1), 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  13. Hong, S.Y., Noh, Y., Dudhia, J. (2006) A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Monthly Weather Review, 134(9), 2318-2341. https://doi.org/10.1175/MWR3199.1
  14. Kain, J.S. (2004) The Kain-Fritsch Convective Parameterization: An Update, Journal of Applied Meteorology, 43(1), 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  15. Kim, H.C., Kim, S., Kim, B.-U., Jin, C.-S., Hong, S., Park, R., Son, S.-W., Bae, C., Bae, M., Song, C.-K., Stein, A. (2017a) Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea, Scientific Reports, 7.
  16. Kim, H.C., Kim, E., Bae, C., Cho, J.H., Kim, B.-U., Kim, S. (2017b) Regional Contributions to Particulate Matter Concentration in the Seoul Metropolitan Area, Korea: Seasonal Variation and Sensitivity to Meteorology and Emissions Inventory, Atmospheric Chemistry and Physics, 17(17), 10315-10332. https://doi.org/10.5194/acp-17-10315-2017
  17. Louis, J.-F. (1979) A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteorology, 17(2), 187-202. https://doi.org/10.1007/BF00117978
  18. Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A. (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682. https://doi.org/10.1029/97JD00237
  19. Ministry of Environment (MOE) (2017a) Comprehensive Plan Report, http://www.me.go.kr/home/file/readDownloadFile.do?fileId=152146&fileSeq=1 (accessed on Dec 22, 2017).
  20. Ministry of Environment (MOE) (2017b) 2nd stage of air quality management plan revision over the Seoul Metropolitan Area, https://www.nkis.re.kr:4445/subject_view1.do?otpId=NRCS00051764&otpSeq=0&popup=P#none (accessed on Mar 30, 2018).
  21. Skamarock, W.C., Klemp, J.B. (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, Journal of Computational Physics, 227, 3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037
  22. U.S. Environmental Protection Agency (US EPA) (2007) Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, $PM_{2.5}$, and Regional Haze, https://www.epa.gov/scram001/guidance/guide/final-03-pm-rh-guidance.pdf (accessed on Dec 22, 2017).
  23. Wang, S.X., Zhao, B., Cai, S.Y., Klimont, Z., Nielsen, C.P., Morikawa, T., Woo, J.H., Kim, Y., Fu, X., Xu, J.Y., Hao, J.M., He, K.B. (2014) Emission trends and mitigation options for air pollutants in East Asia, Atmospheric Chemistry and Physics, 14(13), 6571-6603. https://doi.org/10.5194/acp-14-6571-2014
  24. Watts, N., Amann, M., Ayeb-Karlsson, S., Belesova, K., Bouley, T., Boykoff, M., Byass, P., Cai, W., Campbell-Lendrum, D., Chambers, J., Cox, P.M., Daly, M., Dasandi, N., Davies, M., Depledge, M., Depoux, A., Dominguez-Salas, P., Drummond, P., Ekins, P., Flahault, A., Frumkin, H., Georgeson, L., Ghanei, M., Grace, D., Graham, H., Grojsman, R., Haines, A., Hamilton, I., Hartinger, S., Johnson, A., Kelman, I., Kiesewetter, G., Kniveton, D., Liang, L., Lott, M., Lowe, R., Mace, G., Odhiambo Sewe, M., Maslin, M., Mikhaylov, S., Milner, J., Latifi, A.M., Moradi-Lakeh, M., Morrissey, K., Murray, K., Neville, T., Nilsson, M., Oreszczyn, T., Owfi, F., Pencheon, D., Pye, S., Rabbaniha, M., Robinson, E., Rocklov, J., Schutte, S., Shumake-Guillemot, J., Steinbach, R., Tabatabaei, M., Wheeler, N., Wilkinson, P., Gong, P., Montgomery, H., Costello, A. (2017) The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health, The Lancet, 391(10120), 581-630.
  25. World Health Organization (WHO) (2006) Air Quality Guidelines, Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Dioxide.
  26. Yamartino, R.J. (1993) Nonnegative, Conserved Scalar Transport Using Grid-Cell-centered, Spectrally Constrained Blackman Cubics for Applications on a Variable-Thickness Mesh, Monthly Weather Review, 121(3), 753-763. https://doi.org/10.1175/1520-0493(1993)121<0753:NCSTUG>2.0.CO;2