DOI QR코드

DOI QR Code

Effect of Catalyst Type and NCO Index on the Synthesis and Thermal Properties of Poly(urethane-isocyanurate) Foams

  • Shin, Hye-Kyeong (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Sang-Ho (Department of Chemical Engineering, Dong-A University)
  • Received : 2018.06.11
  • Accepted : 2018.06.25
  • Published : 2018.06.30

Abstract

The effect of the NCO index and catalyst type on the thermal stability of poly(urethane-isocyanurate) (PUIR) foams was investigated to identify a method for enhancing the flame resistance of PUIR. PUIR foams were prepared using 4,4-diphenylmethane diisocyanate (MDI) and [(diethylene glycol)adipate]diol, which were synthesized by esterification of adipic acid and diethylene glycol. Dabco K-15, Dabco TMR-30, and Toyocat RX-5 were used as the catalysts for trimerization and gelation. The amount of urea and isocyanurate groups in PUIR was semi-quantitatively determined by normalizing their absorbance with the phenyl absorbance measured by FT-IR. The normalization data showed that Dabco TMR-30 effectively generated isocyanurate groups in PUIR. As a result, Dabco TMR-30 effectively raised the decomposition temperature and increased the 800 K and 900 K residues of the PUIR foam synthesized with an NCO index of 200.

Keywords

References

  1. S. H. Kim, M. C. Lee, H. D. Kim, H. C. Park, H. M. Jeong, K. S. Yoon, and B. K. Kim, "Nanoclay Reinforced Rigid Polyurethane Foams", J. Appl. Polym. Sci., 117, 1992 (2010). https://doi.org/10.1002/app.32116
  2. K. N. Park, K. H. Yoon, and D. S. Bang, "Morphology and Mechanical Properties of Polyurethane/Organoclay Nanocomposites", Elastomer, 42, 224 (2007).
  3. W. J. Seo, Y. T. Sung, S. J. Han, Y. H. Kim, O. H. Ryu, H. S. Lee, and W. N. Kim, "Synthesis and Properties of Polyurethane/clay nanocomposites by Clay modified with Polymeric Methane Diisocyanate", J. Appl. Polym. Sci., 101, 2879 (2006). https://doi.org/10.1002/app.23357
  4. W. J. Seo, Y. T. Sung, S. B. Kim, K. H. Choe, J. Y. Sung, and W. N. Kim, "Effects of Ultrasound on the Synthesis and Properties of Polyurethane Foam/Clay Nanocomposites", J. Appl. Polym. Sci., 102, 3764 (2006). https://doi.org/10.1002/app.24735
  5. X. Cao, L. James Lee, T. Widya, and C. Macosko, "Polyurethane/clay nanocomposites foams: processing, structure and properties", Polymer, 46, 775 (2005). https://doi.org/10.1016/j.polymer.2004.11.028
  6. Y. J. Chung, "Flame Retardant Properties of Polyurethane by the Addition of Phosphorus Compounds", J. Korean Institute of Fire Sci and Eng., 20, 110 (2006).
  7. H. Singh, A. K. Jain, and T. P. Sharma, "Effect of Phosphorus-Nitrogen Additives on fire Retardancy of Rigid Polyurethane Foams", J. Appl. Polym. Sci., 109, 2718 (2008). https://doi.org/10.1002/app.28324
  8. C. B. Kim, W. J. Seo, O. D. Kwon, and S. B. Kim, "Flame Retardancy of Novel Phosphorus Flame Retardant for Polyurethane Foam", Appl Chem Eng., 22, 540 (2011).
  9. D. Sophie, B. Michel, B. Serge, D. Rene, C. Giovanni, E. Ber- end, L. Chiris, R. Toon, and V. Herve, "Mechanism of Fire Retardancy of Polyurethanes Using Ammonium Polyphosphate", J. Appl. Plym. Sci., 82, 3262 (2001). https://doi.org/10.1002/app.2185
  10. M. Lonescu, "Chemistry and Technology of Polyols for Polyurethanes", Chap16, rapra technology limited, 2005.
  11. M. Szycher, "Szycher's handbook of polyurethanes", 2nd ed. CRC Press, Taylor & Francis Croup, Boca Raton, USA, 2013.
  12. L. Nicholas and G. T. Gmitter, "Heat Resistant Rigid Foams by Trimerization of Isocyanate Terminated Prepolymers", J. Cellular Plastics, 1, 85 (1965). https://doi.org/10.1177/0021955X6500100113
  13. K. C. Frisch, K. J. Patel, and R. D. Marsh, "Isocyanurate-Urethane Foams", J. Cellular Plastics, 6, 203 (1970). https://doi.org/10.1177/0021955X7000600502
  14. M. A. Semsarzadeh and A. H. Navarchian, "Effects of NCO/OH Ratio and Catalyst Concentration on Structure, Thermal Stability, and Crosslink Density of Poly(urethane-isocyanurate)", J Appl Polym Sci , 90, 963 (2003). https://doi.org/10.1002/app.12691
  15. L. Shufen, J. Zhi, Y. Kaijun, and Y. Shuqin, "Studies on the Thermal Behavior of Polyurethanes", Polymer-Plastics Technology and Engineering, 45, 95 (2006). https://doi.org/10.1080/03602550500373634
  16. J. M. Hughes and J. L. Clinton, "Development of Lower Cost Polyurethane Modified Polyisocyanurate and Polyurethane Rigid Foams", Journal of Cellular Plastics, 16, 152. (1980). https://doi.org/10.1177/0021955X8001600303
  17. K. K. Park and S. H. Lee, "Synthesis of Melamine Phosphate- Polyurethane Composite Foam Blown by Water and Characterization of Its Thermal Properties", Polymer(Korea), 38, 441 (2014).
  18. R. Bilbao, J. F Mastral, J. Ceamanos, and M. E Aldea. "Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres", J Anal. Appl. Pyrolysis, 37, 69 (1996). https://doi.org/10.1016/0165-2370(96)00936-9
  19. P. M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, and J. Brauer, "Thermal decomposition (pyrolysis) of urea in an open reaction vessel", Thermochimica Acta, 424, 131 (2004). https://doi.org/10.1016/j.tca.2004.05.018
  20. A. K. Zhitinkina, N. A. Shibanova, and O. G. Tarakanov, "Kinetics and mechanism of the catalytic cyclotrimerisation and polycyclotrimerisation of isocyanates", Russ. Chem. Rev., 54, 1104 (1985). https://doi.org/10.1070/RC1985v054n11ABEH003160
  21. S. Dabi and A. Zilkha, "Oligotrimerization of hexamethylene diisocyanate by organometallic catalysts", Eur. Polym. J., 16, 831 (1980). https://doi.org/10.1016/0014-3057(80)90112-3
  22. E. Delebecq, J.-P. Pascault, B. Boutevin, and F. Ganachaud, "On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane", Chem. Rev., 113, 80 (2013). https://doi.org/10.1021/cr300195n
  23. K.C. Frisch and L.P. Rumao, "Reviews in Macromolecular Chemistry", ed. by G.B. Butler, K.F. O'Driscol, and M. Shen, vol. 6, p.103 Marcel Dekker, Inc., New York, 1971.
  24. S. G. Entelis and O. V. Mesterov, "Kinetics and mechanism of the reactions of isocyanates with compounds containing "active" hydrogen", Russian Chemical Reviews, 35, 917 (1966). https://doi.org/10.1070/RC1966v035n12ABEH001555
  25. S. M. Clift, J. Grimminger, and K. Muha, "New Polyisocyan- urate Catalysts for Rigid Polyurethane Foams", SPI Conference, Abstract 112 (1994).
  26. M. Modesti and A. Lorenzetti, "An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate-polyurethane foams", J. European Polymer, 37, 949 (2001). https://doi.org/10.1016/S0014-3057(00)00209-3
  27. I. Yilgor, E. Yilgor, I. G. Guler, T. C. Ward, and G. L. Wilkes, "FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes", Polymer, 47, 4105 (2006). https://doi.org/10.1016/j.polymer.2006.02.027
  28. R. R. Romero, R. A. Grigsby Jr., E. L. Rister Jr., J. K. Pratt, and D. Ridgway, "A Study of the Reaction Kinetics of Polyisocyanurate Foam Formulations using Real-time FTIR", J. Cellular Plastics, 41, 339 (2005). https://doi.org/10.1177/0021955X05055115