DOI QR코드

DOI QR Code

Skin Barrier and Calcium

  • Lee, Sang Eun (Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine) ;
  • Lee, Seung Hun (Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine)
  • Received : 2018.01.30
  • Accepted : 2018.01.30
  • Published : 2018.06.01

Abstract

Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions ($Ca^{2+}$) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular $Ca^{2+}$ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both $Ca^{2+}$ release from intracellular stores, such as the ER and $Ca^{2+}$ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

Keywords

References

  1. Menon GK, Grayson S, Elias PM. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol 1985;84:508-512. https://doi.org/10.1111/1523-1747.ep12273485
  2. Menon GK, Elias PM. Ultrastructural localization of calcium in psoriatic and normal human epidermis. Arch Dermatol 1991;127:57-63. https://doi.org/10.1001/archderm.1991.01680010067010
  3. Elias P, Ahn S, Brown B, Crumrine D, Feingold KR. Origin of the epidermal calcium gradient: regulation by barrier status and role of active vs passive mechanisms. J Invest Dermatol 2002;119:1269-1274. https://doi.org/10.1046/j.1523-1747.2002.19622.x
  4. Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR. Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest 1992;89:530-538. https://doi.org/10.1172/JCI115617
  5. Lee SH, Elias PM, Feingold KR, Mauro T. A role for ions in barrier recovery after acute perturbation. J Invest Dermatol 1994;102:976-979. https://doi.org/10.1111/1523-1747.ep12384225
  6. Menon GK, Elias PM, Lee SH, Feingold KR. Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res 1992;270:503-512. https://doi.org/10.1007/BF00645052
  7. Menon GK, Feingold KR, Elias PM. Lamellar body secretory response to barrier disruption. J Invest Dermatol 1992;98:279-289. https://doi.org/10.1111/1523-1747.ep12497866
  8. Yuspa SH, Kilkenny AE, Steinert PM, Roop DR. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol 1989;109:1207-1217. https://doi.org/10.1083/jcb.109.3.1207
  9. Behne MJ, Sanchez S, Barry NP, Kirschner N, Meyer W, Mauro TM, et al. Major translocation of calcium upon epidermal barrier insult: imaging and quantification via FLIM/Fourier vector analysis. Arch Dermatol Res 2011;303:103-115. https://doi.org/10.1007/s00403-010-1113-9
  10. Celli A, Sanchez S, Behne M, Hazlett T, Gratton E, Mauro T. The epidermal Ca(2+) gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys J 2010;98:911-921. https://doi.org/10.1016/j.bpj.2009.10.055
  11. Celli A, Mackenzie DS, Crumrine DS, Tu CL, Hupe M, Bikle DD, et al. Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis. Br J Dermatol 2011;164:16-25. https://doi.org/10.1111/j.1365-2133.2010.10046.x
  12. Celli A, Crumrine D, Meyer JM, Mauro TM. Endoplasmic reticulum calcium regulates epidermal barrier response and desmosomal structure. J Invest Dermatol 2016;136:1840-1847. https://doi.org/10.1016/j.jid.2016.05.100
  13. Kirschner N, Rosenthal R, Furuse M, Moll I, Fromm M, Brandner JM. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol 2013;133:1161-1169. https://doi.org/10.1038/jid.2012.507
  14. Kurasawa M, Maeda T, Oba A, Yamamoto T, Sasaki H. Tight junction regulates epidermal calcium ion gradient and differentiation. Biochem Biophys Res Commun 2011;406:506-511. https://doi.org/10.1016/j.bbrc.2011.02.057
  15. Forslind B. Quantitative X-ray microanalysis of skin. Particle probe evaluation of the skin barrier function. Acta Derm Venereol Suppl (Stockh) 1987;134:1-8.
  16. Feingold KR. Lamellar bodies: the key to cutaneous barrier function. J Invest Dermatol 2012;132:1951-1953. https://doi.org/10.1038/jid.2012.177
  17. Mao-Qiang M, Mauro T, Bench G, Warren R, Elias PM, Feingold KR. Calcium and potassium inhibit barrier recovery after disruption, independent of the type of insult in hairless mice. Exp Dermatol 1997;6:36-40. https://doi.org/10.1111/j.1600-0625.1997.tb00143.x
  18. Mauro T, Bench G, Sidderas-Haddad E, Feingold K, Elias P, Cullander C. Acute barrier perturbation abolishes the Ca2+ and K+ gradients in murine epidermis: quantitative measurement using PIXE. J Invest Dermatol 1998;111:1198-1201. https://doi.org/10.1046/j.1523-1747.1998.00421.x
  19. Grubauer G, Elias PM, Feingold KR. Transepidermal water loss: the signal for recovery of barrier structure and function. J Lipid Res 1989;30:323-333.
  20. Elias PM, Ahn SK, Denda M, Brown BE, Crumrine D, Kimutai LK, et al. Modulations in epidermal calcium regulate the expression of differentiation-specific markers. J Invest Dermatol 2002;119:1128-1136. https://doi.org/10.1046/j.1523-1747.2002.19512.x
  21. Choi EH, Kim MJ, Yeh BI, Ahn SK, Lee SH. Iontophoresis and sonophoresis stimulate epidermal cytokine expression at energies that do not provoke a barrier abnormality: lamellar body secretion and cytokine expression are linked to altered epidermal calcium levels. J Invest Dermatol 2003;121:1138-1144. https://doi.org/10.1046/j.1523-1747.2003.12566.x
  22. Hennings H, Michael D, Cheng C, Steinert P, Holbrook K, Yuspa SH. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 1980;19:245-254. https://doi.org/10.1016/0092-8674(80)90406-7
  23. Pillai S, Bikle DD, Hincenbergs M, Elias PM. Biochemical and morphological characterization of growth and differentiation of normal human neonatal keratinocytes in a serum-free medium. J Cell Physiol 1988;134:229-237. https://doi.org/10.1002/jcp.1041340208
  24. Eckert RL, Crish JF, Banks EB, Welter JF. The epidermis: genes on-genes off. J Invest Dermatol 1997;109:501-509. https://doi.org/10.1111/1523-1747.ep12336477
  25. Ng DC, Shafaee S, Lee D, Bikle DD. Requirement of an AP-1 site in the calcium response region of the involucrin promoter. J Biol Chem 2000;275:24080-24088. https://doi.org/10.1074/jbc.M002508200
  26. Presland RB, Bassuk JA, Kimball JR, Dale BA. Characterization of two distinct calcium-binding sites in the amino-terminus of human profilaggrin. J Invest Dermatol 1995;104:218-223. https://doi.org/10.1111/1523-1747.ep12612770
  27. Hitomi K. Transglutaminases in skin epidermis. Eur J Dermatol 2005;15:313-319.
  28. Lee YS, Dlugosz AA, McKay R, Dean NM, Yuspa SH. Definition by specific antisense oligonucleotides of a role for protein kinase C alpha in expression of differentiation markers in normal and neoplastic mouse epidermal keratinocytes. Mol Carcinog 1997;18:44-53. https://doi.org/10.1002/(SICI)1098-2744(199701)18:1<44::AID-MC6>3.0.CO;2-R
  29. Denning MF, Dlugosz AA, Williams EK, Szallasi Z, Blumberg PM, Yuspa SH. Specific protein kinase C isozymes mediate the induction of keratinocyte differentiation markers by calcium. Cell Growth Differ 1995;6:149-157.
  30. Deucher A, Efimova T, Eckert RL. Calcium-dependent involucrin expression is inversely regulated by protein kinase C (PKC)alpha and PKCdelta. J Biol Chem 2002;277:17032-17040. https://doi.org/10.1074/jbc.M109076200
  31. Tu CL, Oda Y, Komuves L, Bikle DD. The role of the calcium-sensing receptor in epidermal differentiation. Cell Calcium 2004;35:265-273. https://doi.org/10.1016/j.ceca.2003.10.019
  32. Tu CL, Bikle DD. Role of the calcium-sensing receptor in calcium regulation of epidermal differentiation and function. Best Pract Res Clin Endocrinol Metab 2013;27:415-427. https://doi.org/10.1016/j.beem.2013.03.002
  33. Oda Y, Tu CL, Pillai S, Bikle DD. The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J Biol Chem 1998;273:23344-23352. https://doi.org/10.1074/jbc.273.36.23344
  34. Tu CL, Chang W, Bikle DD. The role of the calcium sensing receptor in regulating intracellular calcium handling in human epidermal keratinocytes. J Invest Dermatol 2007;127:1074-1083. https://doi.org/10.1038/sj.jid.5700633
  35. Tu CL, Chang W, Bikle DD. The extracellular calciumsensing receptor is required for calcium-induced differentiation in human keratinocytes. J Biol Chem 2001;276:41079-41085. https://doi.org/10.1074/jbc.M107122200
  36. Blank JL, Ross AH, Exton JH. Purification and characterization of two G-proteins that activate the beta 1 isozyme of phosphoinositide-specific phospholipase C. Identification as members of the Gq class. J Biol Chem 1991;266:18206-18216.
  37. Bikle DD, Ratnam A, Mauro T, Harris J, Pillai S. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor. J Clin Invest 1996;97:1085-1093. https://doi.org/10.1172/JCI118501
  38. Filvaroff E, Calautti E, Reiss M, Dotto GP. Functional evidence for an extracellular calcium receptor mechanism triggering tyrosine kinase activation associated with mouse keratinocyte differentiation. J Biol Chem 1994;269:21735-21740.
  39. Tu CL, Oda Y, Bikle DD. Effects of a calcium receptor activator on the cellular response to calcium in human keratinocytes. J Invest Dermatol 1999;113:340-345. https://doi.org/10.1046/j.1523-1747.1999.00698.x
  40. Tu CL, Crumrine DA, Man MQ, Chang W, Elalieh H, You M, et al. Ablation of the calcium-sensing receptor in keratinocytes impairs epidermal differentiation and barrier function. J Invest Dermatol 2012;132:2350-2359. https://doi.org/10.1038/jid.2012.159
  41. Park K, Ikushiro H, Seo HS, Shin KO, Kim YI, Kim JY, et al. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. Proc Natl Acad Sci U S A 2016;113:E1334-E1342. https://doi.org/10.1073/pnas.1504555113
  42. Kim YI, Park K, Kim JY, Seo HS, Shin KO, Lee YM, et al. An endoplasmic reticulum stress-initiated sphingolipid metabolite, ceramide-1-phosphate, regulates epithelial innate immunity by stimulating ${\beta}$-defensin production. Mol Cell Biol 2014;34:4368-4378. https://doi.org/10.1128/MCB.00599-14
  43. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012;13:89-102. https://doi.org/10.1038/nrm3270
  44. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007;8:519-529. https://doi.org/10.1038/nrm2199
  45. Savignac M, Simon M, Edir A, Guibbal L, Hovnanian A. SERCA2 dysfunction in Darier disease causes endoplasmic reticulum stress and impaired cell-to-cell adhesion strength: rescue by Miglustat. J Invest Dermatol 2014;134:1961-1970. https://doi.org/10.1038/jid.2014.8
  46. Mauro T. Endoplasmic reticulum calcium, stress, and cell-to-cell adhesion. J Invest Dermatol 2014;134:1800-1801. https://doi.org/10.1038/jid.2014.97
  47. Graham DM, Huang L, Robinson KR, Messerli MA. Epidermal keratinocyte polarity and motility require Ca2+ influx through TRPV1. J Cell Sci 2013;126:4602-4613. https://doi.org/10.1242/jcs.122192
  48. Tsai FC, Meyer T. Ca2+ pulses control local cycles of lamellipodia retraction and adhesion along the front of migrating cells. Curr Biol 2012;22:837-842. https://doi.org/10.1016/j.cub.2012.03.037
  49. Maroto R, Hamill OP. MscCa Regulation of tumor cell migration and metastasis. Curr Top Membr 2007;59:485-509.
  50. Bourguignon LY, Ramez M, Gilad E, Singleton PA, Man MQ, Crumrine DA, et al. Hyaluronan-CD44 interaction stimulates keratinocyte differentiation, lamellar body formation/secretion, and permeability barrier homeostasis. J Invest Dermatol 2006;126:1356-1365. https://doi.org/10.1038/sj.jid.5700260
  51. Lee SE, Jun JE, Choi EH, Ahn SK, Lee SH. Stimulation of epidermal calcium gradient loss increases the expression of hyaluronan and CD44 in mouse skin. Clin Exp Dermatol 2010;35:650-657.
  52. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 2001;24:487-517. https://doi.org/10.1146/annurev.neuro.24.1.487
  53. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, et al. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 2002;9:229-231. https://doi.org/10.1016/S1097-2765(02)00448-3
  54. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol 2006;68:619-647. https://doi.org/10.1146/annurev.physiol.68.040204.100431
  55. Caterina MJ, Pang Z. TRP channels in skin biology and pathophysiology. Pharmaceuticals (Basel) 2016;9:E77. https://doi.org/10.3390/ph9040077
  56. Toth BI, Olah A, Szollosi AG, Biro T. TRP channels in the skin. Br J Pharmacol 2014;171:2568-2581. https://doi.org/10.1111/bph.12569
  57. Ho JC, Lee CH. TRP channels in skin: from physiological implications to clinical significances. Biophysics (Nagoya-shi) 2015;11:17-24.
  58. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 2007;87:165-217. https://doi.org/10.1152/physrev.00021.2006
  59. Aubdool AA, Brain SD. Neurovascular aspects of skin neurogenic inflammation. J Investig Dermatol Symp Proc 2011;15:33-39. https://doi.org/10.1038/jidsymp.2011.8
  60. Voets T. Quantifying and modeling the temperaturedependent gating of TRP channels. Rev Physiol Biochem Pharmacol 2012;162:91-119.
  61. Radtke C, Sinis N, Sauter M, Jahn S, Kraushaar U, Guenther E, et al. TRPV channel expression in human skin and possible role in thermally induced cell death. J Burn Care Res 2011;32:150-159. https://doi.org/10.1097/BCR.0b013e318203350c
  62. Denda M, Fuziwara S, Inoue K, Denda S, Akamatsu H, Tomitaka A, et al. Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun 2001;285:1250-1252. https://doi.org/10.1006/bbrc.2001.5299
  63. Toth BI, Dobrosi N, Dajnoki A, Czifra G, Olah A, Szollosi AG, et al. Endocannabinoids modulate human epidermal keratinocyte proliferation and survival via the sequential engagement of cannabinoid receptor-1 and transient receptor potential vanilloid-1. J Invest Dermatol 2011;131:1095-1104. https://doi.org/10.1038/jid.2010.421
  64. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 2002;296:2046-2049. https://doi.org/10.1126/science.1073140
  65. Steinhoff M, Biro T. A TR(I)P to pruritus research: role of TRPV3 in inflammation and itch. J Invest Dermatol 2009;129:531-535. https://doi.org/10.1038/jid.2008.440
  66. Nilius B, Biro T. TRPV3: a 'more than skinny' channel. Exp Dermatol 2013;22:447-452. https://doi.org/10.1111/exd.12163
  67. Nilius B, Biro T, Owsianik G. TRPV3: time to decipher a poorly understood family member! J Physiol 2014;592:295-304. https://doi.org/10.1113/jphysiol.2013.255968
  68. Cheng X, Jin J, Hu L, Shen D, Dong XP, Samie MA, et al. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 2010;141:331-343. https://doi.org/10.1016/j.cell.2010.03.013
  69. Yoshioka T, Imura K, Asakawa M, Suzuki M, Oshima I, Hirasawa T, et al. Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol 2009;129:714-722. https://doi.org/10.1038/jid.2008.245
  70. Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D, et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 2012;90:558-564. https://doi.org/10.1016/j.ajhg.2012.02.006
  71. Lai-Cheong JE, Sethuraman G, Ramam M, Stone K, Simpson MA, McGrath JA. Recurrent heterozygous missense mutation, p.Gly573Ser, in the TRPV3 gene in an Indian boy with sporadic Olmsted syndrome. Br J Dermatol 2012;167:440-442. https://doi.org/10.1111/j.1365-2133.2012.11115.x
  72. Lehen'kyi V, Beck B, Polakowska R, Charveron M, Bordat P, Skryma R, et al. TRPV6 is a Ca2+ entry channel essential for Ca2+-induced differentiation of human keratinocytes. J Biol Chem 2007;282:22582-22591. https://doi.org/10.1074/jbc.M611398200
  73. Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A, Kos CH, et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 2007;22:274-285.
  74. Montell C. TRP channels: mediators of sensory signaling and roles in health and disease. Chem Senses 2006; 31:A45-A45.
  75. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L. A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 2009;106:3202-3206. https://doi.org/10.1073/pnas.0813346106
  76. Beck B, Lehen'kyi V, Roudbaraki M, Flourakis M, Charveron M, Bordat P, et al. TRPC channels determine human keratinocyte differentiation: new insight into basal cell carcinoma. Cell Calcium 2008;43:492-505. https://doi.org/10.1016/j.ceca.2007.08.005
  77. Fatherazi S, Presland RB, Belton CM, Goodwin P, Al-Qutub M, Trbic Z, et al. Evidence that TRPC4 supports the calcium selective I(CRAC)-like current in human gingival keratinocytes. Pflugers Arch 2007;453:879-889. https://doi.org/10.1007/s00424-006-0156-4
  78. Cai S, Fatherazi S, Presland RB, Belton CM, Roberts FA, Goodwin PC, et al. Evidence that TRPC1 contributes to calcium-induced differentiation of human keratinocytes. Pflugers Arch 2006;452:43-52. https://doi.org/10.1007/s00424-005-0001-1
  79. Muller M, Essin K, Hill K, Beschmann H, Rubant S, Schempp CM, et al. Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J Biol Chem 2008;283:33942-33954. https://doi.org/10.1074/jbc.M801844200
  80. Leuner K, Kraus M, Woelfle U, Beschmann H, Harteneck C, Boehncke WH, et al. Reduced TRPC channel expression in psoriatic keratinocytes is associated with impaired differentiation and enhanced proliferation. PLoS One 2011;6:e14716. https://doi.org/10.1371/journal.pone.0014716
  81. Pani B, Cornatzer E, Cornatzer W, Shin DM, Pittelkow MR, Hovnanian A, et al. Up-regulation of transient receptor potential canonical 1 (TRPC1) following sarco(endo)plasmic reticulum Ca2+ ATPase 2 gene silencing promotes cell survival: a potential role for TRPC1 in Darier's disease. Mol Biol Cell 2006;17:4446-4458. https://doi.org/10.1091/mbc.e06-03-0251
  82. Denda M, Sokabe T, Fukumi-Tominaga T, Tominaga M. Effects of skin surface temperature on epidermal permeability barrier homeostasis. J Invest Dermatol 2007; 127:654-659. Erratum in: J Invest Dermatol 2007;127:733. https://doi.org/10.1038/sj.jid.5700590
  83. Yun JW, Seo JA, Jeong YS, Bae IH, Jang WH, Lee J, et al. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J Dermatol Sci 2011;62:8-15.
  84. Sokabe T, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M. The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem 2010;285:18749-18758. https://doi.org/10.1074/jbc.M110.103606
  85. Sokabe T, Tominaga M. The TRPV4 cation channel: a molecule linking skin temperature and barrier function. Commun Integr Biol 2010;3:619-621. https://doi.org/10.4161/cib.3.6.13461
  86. Kida N, Sokabe T, Kashio M, Haruna K, Mizuno Y, Suga Y, et al. Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes. Pflugers Arch 2012;463:715-725. https://doi.org/10.1007/s00424-012-1081-3
  87. Akazawa Y, Yuki T, Yoshida H, Sugiyama Y, Inoue S. Activation of TRPV4 strengthens the tight-junction barrier in human epidermal keratinocytes. Skin Pharmacol Physiol 2013;26:15-21. https://doi.org/10.1159/000343173
  88. Denda M, Tsutsumi M, Goto M, Ikeyama K, Denda S. Topical application of TRPA1 agonists and brief cold exposure accelerate skin permeability barrier recovery. J Invest Dermatol 2010;130:1942-1945. https://doi.org/10.1038/jid.2010.32
  89. Denda M, Tsutsumi M, Denda S. Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis. Exp Dermatol 2010;19:791-795. https://doi.org/10.1111/j.1600-0625.2010.01154.x
  90. Mandadi S, Sokabe T, Shibasaki K, Katanosaka K, Mizuno A, Moqrich A, et al. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 2009;458:1093-1102. https://doi.org/10.1007/s00424-009-0703-x
  91. Asakawa M, Yoshioka T, Matsutani T, Hikita I, Suzuki M, Oshima I, et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 2006;126:2664-2672. https://doi.org/10.1038/sj.jid.5700468
  92. Yamamoto-Kasai E, Yasui K, Shichijo M, Sakata T, Yoshioka T. Impact of TRPV3 on the development of allergic dermatitis as a dendritic cell modulator. Exp Dermatol 2013;22:820-824. https://doi.org/10.1111/exd.12273
  93. Huang SM, Lee H, Chung MK, Park U, Yu YY, Bradshaw HB, et al. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 2008;28:13727-13737. https://doi.org/10.1523/JNEUROSCI.5741-07.2008
  94. Luo J, Feng J, Yu G, Yang P, Mack MR, Du J, et al. Transient receptor potential vanilloid 4-expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. J Allergy Clin Immunol 2018;141:608-619.e7. https://doi.org/10.1016/j.jaci.2017.05.051
  95. Vandenberghe M, Raphael M, Lehen'kyi V, Gordienko D, Hastie R, Oddos T, et al. ORAI1 calcium channel orchestrates skin homeostasis. Proc Natl Acad Sci U S A 2013;110:E4839-E4848. https://doi.org/10.1073/pnas.1310394110
  96. Darbellay B, Barnes L, Boehncke WH, Saurat JH, Kaya G. Reversal of murine epidermal atrophy by topical modulation of calcium signaling. J Invest Dermatol 2014;134:1599-1608. https://doi.org/10.1038/jid.2013.524
  97. Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013;155:285-295. https://doi.org/10.1016/j.cell.2013.08.057
  98. Kumamoto J, Goto M, Denda S, Nakatani M, Takasugi Y, Tsuchiya K, et al. External negative electric potential accelerates exocytosis of lamellar bodies in human skin ex vivo. Exp Dermatol 2013;22:421-423. https://doi.org/10.1111/exd.12145
  99. Denda M, Fujiwara S, Hibino T. Expression of voltage-gated calcium channel subunit alpha1C in epidermal keratinocytes and effects of agonist and antagonists of the channel on skin barrier homeostasis. Exp Dermatol 2006;15:455-460. https://doi.org/10.1111/j.0906-6705.2006.00430.x

Cited by

  1. Agonism of Gpr40 Protects the Capacities of Epidermal Stem Cells (ESCs) Against Ultraviolet-B (UV-B) vol.14, pp.None, 2018, https://doi.org/10.2147/dddt.s252060
  2. Possible Implication of Long Term Sucrose Diet on Integumentary Tissues’ Minerals of Male Albino Rats vol.15, pp.1, 2018, https://doi.org/10.3923/tmr.2020.7.13
  3. Calcium-sensing receptor deletion in the mouse esophagus alters barrier function vol.318, pp.1, 2018, https://doi.org/10.1152/ajpgi.00021.2019
  4. The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing vol.8, pp.5, 2020, https://doi.org/10.3390/biomedicines8050101
  5. Calcium regulation of stem cells vol.21, pp.6, 2018, https://doi.org/10.15252/embr.202050028
  6. Monitoring calcium-induced epidermal differentiation in vitro using multiphoton microscopy vol.25, pp.7, 2020, https://doi.org/10.1117/1.jbo.25.7.071205
  7. The Role of MicroRNAs in Epidermal Barrier vol.21, pp.16, 2018, https://doi.org/10.3390/ijms21165781
  8. Citrus sudachi Peel Extract Suppresses Cell Proliferation and Promotes the Differentiation of Keratinocytes through Inhibition of the EGFR–ERK Signaling Pathway vol.10, pp.10, 2018, https://doi.org/10.3390/biom10101468
  9. Novel Functions and Signaling Specificity for the GraS Sensor Kinase of Staphylococcus aureus in Response to Acidic pH vol.202, pp.22, 2020, https://doi.org/10.1128/jb.00219-20
  10. Thioredoxin-dependent system. Application of inhibitors vol.36, pp.1, 2018, https://doi.org/10.1080/14756366.2020.1867121
  11. Calcium Channels: Noteworthy Regulators and Therapeutic Targets in Dermatological Diseases vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.702264
  12. Freeze‐Thawing Chitosan/Ions Hydrogel Coated Gauzes Releasing Multiple Metal Ions on Demand for Improved Infected Wound Healing vol.10, pp.6, 2018, https://doi.org/10.1002/adhm.202001591
  13. The cutaneous effects of long‐term use of Dead Sea mud on healthy skin: a 4‐week study vol.60, pp.3, 2018, https://doi.org/10.1111/ijd.15304
  14. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells vol.220, pp.4, 2021, https://doi.org/10.1083/jcb.201908178
  15. SMOC1 and IL-4 and IL-13 Cytokines Interfere with Ca2+ Mobilization in Primary Human Keratinocytes vol.141, pp.7, 2018, https://doi.org/10.1016/j.jid.2020.12.026
  16. Cellular Signalling and Photobiomodulation in Chronic Wound Repair vol.22, pp.20, 2018, https://doi.org/10.3390/ijms222011223
  17. Olfactory Receptor OR7A17 Expression Correlates with All-Trans Retinoic Acid (ATRA)-Induced Suppression of Proliferation in Human Keratinocyte Cells vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212304
  18. The effect of balneotherapy with natural mineral dissolved water on dry skin in atopic dermatitis: A phase IIa, nonrandomized, controlled study vol.4, pp.6, 2021, https://doi.org/10.1002/cia2.12195
  19. Beyond Ca2+ signalling: the role of TRPV3 in the transport of NH4+ vol.473, pp.12, 2021, https://doi.org/10.1007/s00424-021-02616-0
  20. Calcium Signaling in the Photodamaged Skin: In Vivo Experiments and Mathematical Modeling vol.3, pp.1, 2021, https://doi.org/10.1093/function/zqab064