DOI QR코드

DOI QR Code

A simple method for estimating transition locations on blade surface of model propellers to be used for calculating viscous force

  • Yao, Huilan (State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University) ;
  • Zhang, Huaixin (State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University)
  • Received : 2017.06.01
  • Accepted : 2017.09.03
  • Published : 2018.07.31

Abstract

Effects of inflow Reynolds number (Re), turbulence intensity (I) and pressure gradient on the transition flow over a blade section were studied using the ${\gamma}-Re{\theta}$ transition model (STAR-CCM+). Results show that the $Re_T$ (transition Re) at the transition location ($P_T$) varies strongly with Re, I and the magnitude of pressure gradient. The $Re_T$ increases significantly with the increase of the magnitude of favorable pressure gradient. It demonstrates that the $Re_T$ on different blade sections of a rotating propeller are different. More importantly, when there is strong adverse pressure gradient, the $P_T$ is always close to the minimum pressure point. Based on these conclusions, the $P_T$ on model propeller blade surface can be estimated. Numerical investigations of pressure distribution and transition flow on a propeller blade section prove these findings. Last, a simple method was proposed to estimate the $P_T$ only based on the propeller geometry and the advance coefficient.

Keywords

References

  1. Barkmann, U., 2011. Potsdam Propeller Test Case (PPTC) - Open Water Tests with the Model Propeller VP1304. Report 3752. Schiffbau-Versuchsanstalt Potsdam.
  2. Bhattacharyya, A., Krasilnikov, V., Steen, S., 2015. Scale Effects on a 4-Bladed Propeller Operating in Ducts of Different Design in Open Water. In: Fourth International Symposium on Marine Propulsors, Austin, Texas.
  3. Bhattacharyya, A., Krasilnikov, V., Steen, S., 2016a. Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs. Ocean Eng. 112, 226-242. https://doi.org/10.1016/j.oceaneng.2015.12.024
  4. Bhattacharyya, A., Krasilnikov, V., Steen, S., 2016b. A CFD-based scaling approach for ducted propellers. Ocean Eng. 123, 116-130. https://doi.org/10.1016/j.oceaneng.2016.06.011
  5. Cd-Adapco, 2015. Star-CCM+, User and Theory Manual, version 7.04.011.
  6. Chaput, E., 1997.Application-Oriented Synthesis ofWork Presented in Chapter II (Chapter 3). In: Notes on Numerical Fluid Mechanics, vol. 58, pp. 327-346.
  7. Helma, S., 2015. A scaling procedure for modern propeller designs. Ocean Eng. 120, 165-174.
  8. ITTC, 1978. ITTC Performance Prediction Method. Recommended Procedures and Guidelines, 7.5-02 - 03-01.4.
  9. ITTC, 2014. In: Proceedings of the 27th ITTC Conference, August 31, Copenhagen, Denmark.
  10. Malan, P., Suluksna, K., Juntasaro, E., 2009. Calibrating the ${\gamma}-Re{\theta}$ transition model for commercial CFD. In: 47th AIAA Aerospace Sciences Meeting, 5-8.
  11. Mach, K.P., 2011. Potsdam Propeller Test Case (PPTC) - LDV Velocity Measurements with the Model Propeller VP1304. Report 3754. Schiffbau-Versuchsanstalt Potsdam.
  12. Meyne, K., 1968. Experimentelle und theoretische Betrachtungen zum Mass-stabseffekt bei Modellpropeller-Untersuchungen. In: Schiffstechnik, vol. 15.
  13. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Volker, S., 2006. A correlation-based transition model using local variables-part I: model formulation. J. Turbomach. 128 (3), 57-67.
  14. Muller, S.B., Abdel-Maksoud, M., Hilbert, G., 2009. Scale Effects on Propellers for Large Container Vessels. In: In the first International Symposium on Marine Propulsors, Trondheim, Norway.
  15. Muller, S.B., 2013. Numerische Untersuchung der Massstabseffekte an Schiffspropellern (Ph.D. thesis). Abteilung Maschinenbau, Universitat Duisburg-Essen, Deutschland.
  16. Praefke, E., 1994. Multi-Component Propulsors for Merchant Ships - Design Considerations and Model Test Results. In: SNAME Symposium "Propeller/Shafting '94", Sept. 20-21, Virginia, USA.
  17. Sanchez-Caja, A., Gonzalez-Adalid, J., Perez-Sobrino, M., Sipila, T., 2014. Scale effects on tip loaded propeller performance using a RANSE solver. Ocean Eng. 88 (5), 607-617. https://doi.org/10.1016/j.oceaneng.2014.04.029
  18. Schubauer, G.B., Klebanoff, P.S., 1955. Contributions on the Mechanics of Boundary Layer Transition. NACA Technical Note.
  19. Streckwall, H., Greitsch, L., Muller, J., Scharf, M., Bugalski, T., 2013. Development of a strip method proposed to serve as a new standard for propeller performance scaling. Ship Technol. Res. 60 (2), 58-60. https://doi.org/10.1179/str.2013.60.2.002

Cited by

  1. Numerical simulation of boundary-layer transition flow of a model propeller and the full-scale propeller for studying scale effects vol.23, pp.4, 2018, https://doi.org/10.1007/s00773-018-0528-4
  2. A numerical study on the interaction between forward and aft propellers of hybrid CRP pod propulsion systems vol.186, pp.None, 2018, https://doi.org/10.1016/j.oceaneng.2019.05.066
  3. An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows vol.12, pp.None, 2018, https://doi.org/10.1016/j.ijnaoe.2020.12.001
  4. Prediction of the Propeller Performance at Different Reynolds Number Regimes with RANS vol.9, pp.10, 2021, https://doi.org/10.3390/jmse9101115