DOI QR코드

DOI QR Code

Nonthermal plasma on the shear bond strength of relining resin to thermoplastic denture base resin

열가소성 의치상 레진과 첨상용 레진의 접착 강도에 저온플라즈마가 미치는 효과

  • Manaloto-Ceballos, Liezl (Institute for Clinical Dental Research, Korea University Guro Hospital) ;
  • Labriaga, Wilmart (Institute for Clinical Dental Research, Korea University Guro Hospital) ;
  • Song, So-Yeon (Institute for Clinical Dental Research, Korea University Guro Hospital) ;
  • Park, Jin-Hong (Institute for Clinical Dental Research, Korea University Guro Hospital) ;
  • Lee, Jeong-Yol (Institute for Clinical Dental Research, Korea University Guro Hospital) ;
  • Shin, Sang-Wan (Institute for Clinical Dental Research, Korea University Guro Hospital)
  • ;
  • ;
  • 송소연 (고려대학교 구로병원 임상치의학연구소) ;
  • 박진홍 (고려대학교 구로병원 임상치의학연구소) ;
  • 이정열 (고려대학교 구로병원 임상치의학연구소) ;
  • 신상완 (고려대학교 구로병원 임상치의학연구소)
  • Received : 2018.02.28
  • Accepted : 2018.05.17
  • Published : 2018.07.31

Abstract

Purpose: This study evaluated the effect of nonthermal plasma treatment on the bond strength of autopolymerizing relining resin to the injection molded thermoplastic denture base resins (TDBRs) with different surface treatments. Materials and methods: Acrylic Resin (Acrytone), Polyester (Estheshot-Bright), Polyamide (Valplast) and Polypropylene (Weldenz) were subjected to various surface treatments: No treatment, Nonthermal plasma, Sandblasting, Sandblasting and nonthermal plasma. Specimens were bonded using an autopolymerizing relining resin. Shear bond strength was tested using universal testing machine with crosshead speed of 1 mm/min. Statistical analysis by two-way analysis of variance with Tukey's test post hoc was used. Results: Acrytone showed significantly higher shear bond strength value among other TDBR group while Weldenz had the lowest. The sandblasting and nonthermal plasma condition had significantly higher shear bond strength value in all of the resin groups (P < .05). Conclusion: The use of nonthermal plasma treatment showed limited effect on the shear bond strength between TDBRs and relining resin, and combination of nonthermal plasma and sandblasting improved the shear bond strength between TDBR and reline material.

목적: 이 연구는 저온 플라즈마가 자가중합형 재이장용 레진과 주입형 열가소성 의치상 레진의 결합 강도에 미치는 영향을 다른 표면 처리 방법에서 평가하기 위함이다. 재료 및 방법: 네 가지 열가소성 의치상이 이 연구에서 사용되었다: Acrylic Resin (Acrytone), Polyester (Estheshot-Bright), Polyamide (Valplast), Polypropylene (Weldenz)에 다양한 표면처리를 시행하였다: 대조군, 저온플라즈마, Sandblasting, Sandblasting와 저온플라즈마. 표면 처리 후 모든 시편은 Tokuyama Rebase II를 이용하여 원형의 테플론 관에 접착되었다. 전단강도는 Universal testing machine을 통해 crosshead speed 1 mm/min으로 측정되었다. 통계 분석 방법으로는 이원분산분석을, 사후 검정 방법으로는 Tukey's test가 사용되었다. 결과: Acrytone이 다른 열가소성 의치상 레진 그룹에 비하여 통계적으로 유의한 수준에서 더 높은 전단강도를 보인 반면 Weldenz는 가장 낮은 값을 나타냈다. Sandblast와 저온플라즈마를 순차적으로 시행한 조건에서 모든 레진 그룹 중 통계적으로 유의한 수준에서 가장 높은 전단강도 값을 나타냈다. 결론: 열경화성 의치상 레진과 재이장용 레진 사이의 전단강도에 저온플라즈마는 제한된 효과를 나타내었으며, sandblasting 처리와 함께 처리되었을 때 두 재료간 전단강도는 향상되었다.

Keywords

References

  1. Fueki K, Ohkubo C, Yatabe M, Arakawa I, Arita M, Ino S, Kanamori T, Kawai Y, Kawara M, Komiyama O, Suzuki T, Nagata K, Hosoki M, Masumi S, Yamauchi M, Aita H, Ono T, Kondo H, Tamaki K, Matsuka Y, Tsukasaki H, Fujisawa M, Baba K, Koyano K, Yatani H. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures. J Prosthodont Res 2014;58:71-84. https://doi.org/10.1016/j.jpor.2014.03.002
  2. Takabayashi Y. Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dent Mater J 2010;29:353-61. https://doi.org/10.4012/dmj.2009-114
  3. Hamanaka I, Shimizu H, Takahashi Y. Bond strength of a chairside autopolymerizing reline resin to injection-molded thermoplastic denture base resins. J Prosthodont Res 2017;61:67-72. https://doi.org/10.1016/j.jpor.2016.04.006
  4. Hargreaves AS. Nylon as a denture-base material. Dent Pract Dent Rec 1971;22:122-8.
  5. Stafford GD, Huggett R, MacGregor AR, Graham J. The use of nylon as a denture-base material. J Dent 1986;14:18-22. https://doi.org/10.1016/0300-5712(86)90097-7
  6. Parvizi A, Lindquist T, Schneider R, Williamson D, Boyer D, Dawson DV. Comparison of the dimensional accuracy of in- jection-molded denture base materials to that of conventional pressure-pack acrylic resin. J Prosthodont 2004;13:83-9. https://doi.org/10.1111/j.1532-849X.2004.04014.x
  7. Yunus N, Rashid AA, Azmi LL, Abu-Hassan MI. Some flexural properties of a nylon denture base polymer. J Oral Rehabil 2005;32:65-71. https://doi.org/10.1111/j.1365-2842.2004.01370.x
  8. Katsumata Y, Hojo S, Ino S, Hamano N, Watanabe T, Suzuki Y, Ikeya H, Morino T, Toyoda M. Mechanical characterization of a flexible nylon denture base material. Bull Kanagawa Dent Col 2007;35:177-82.
  9. Koodaryan R, Hafezeqoran A. Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer. J Adv Prosthodont 2016;8:504-10. https://doi.org/10.4047/jap.2016.8.6.504
  10. Kim JH, Choe HC, Son MK. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture. Dent Mater J 2014;33:32-8. https://doi.org/10.4012/dmj.2013-121
  11. Brown HR. Adhesion of polymers. MRS Bull 1996;21:24-7.
  12. Katsumata Y, Hojo S, Hamano N, Watanabe T, Yamaguchi H, Okada S, Teranaka T, Ino S. Bonding strength of autopolymerizing resin to nylon denture base polymer. Dent Mater J 2009;28:409-18. https://doi.org/10.4012/dmj.28.409
  13. Nishigawa G, Maruo Y, Oka M, Oki K, Minagi S, Okamoto M. Plasma treatment increased shear bond strength between heat cured acrylic resin and self-curing acrylic resin. J Oral Rehabil 2003;30:1081-4. https://doi.org/10.1046/j.1365-2842.2003.01198.x
  14. Hoffmann C, Berganza C, Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res 2013;3:21. https://doi.org/10.1186/2045-9912-3-21
  15. Chen M, Zhang Y, Sky Driver M, Caruso AN, Yu Q, Wang Y. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent Mater 2013;29:871-80. https://doi.org/10.1016/j.dental.2013.05.002
  16. Yang YZ, Tian JM, Tian JT, Chen ZQ, Deng XJ, Zhang DH. Preparation of graded porous titanium coatings on titanium implant materials by plasma spraying. J Biomed Mater Res 2000;52:333-7. https://doi.org/10.1002/1097-4636(200011)52:2<333::AID-JBM12>3.0.CO;2-T
  17. Fischer H, Wirtz DC, Weber M, Neuss M, Niethard FU, Marx R. Improvement of the long-term adhesive strength between metal stem and polymethylmethacrylate bone cement by a silica/silane interlayer system. J Biomed Mater Res 2001;57:413-8. https://doi.org/10.1002/1097-4636(20011205)57:3<413::AID-JBM1184>3.0.CO;2-R
  18. Kim JH, Choe HC, Son MK. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture. Dent Mater J 2014;33:32-8. https://doi.org/10.4012/dmj.2013-121
  19. Su N, Yue L, Liao Y, Liu W, Zhang H, Li X, Wang H, Shen J. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin. J Adv Prosthodont 2015;7:214-23. https://doi.org/10.4047/jap.2015.7.3.214
  20. Ozden N, Akaltan F, Suzer S, Akovali G. Time-related wettability characteristic of acrylic resin surfaces treated by glow discharge. J Prosthet Dent 1999;82:680-4. https://doi.org/10.1016/S0022-3913(99)70009-0
  21. Jokinen V, Suvanto P, Franssila S. Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 2012;6:16501-10. https://doi.org/10.1063/1.3673251
  22. Ozcan C, Zorlutuna P, Hasirci V, Hasirci N. Influence of oxygen plasma modification on surface free energy of PMMA films and cell attachment. Macromol Symp 2008;269:128-37. https://doi.org/10.1002/masy.200850916

Cited by

  1. 복합레진 인레이의 표면처리방법에 따른 표면특성 비교 vol.19, pp.2, 2018, https://doi.org/10.13065/jksdh.20190017