DOI QR코드

DOI QR Code

Current Status of Sarcopenia in Korea: A Focus on Korean Geripausal Women

  • Received : 2017.12.20
  • Accepted : 2018.04.26
  • Published : 2018.06.30

Abstract

Sarcopenia is defined as an age-associated decline in muscle mass and function caused by several etiologies and mechanisms. Muscle mass and function do not decrease concurrently, and a loss of muscle function may be more highly associated with adverse health outcomes. Despite the clinical significance of sarcopenia, no universally operational definition of sarcopenia or standardized intervention programs are currently available. Sarcopenia, osteoporosis, and obesity share several pathophysiological mechanisms, and a combination of these entities may lead to an increased risk of musculoskeletal, cardiometabolic, and psychological morbidities especially in geripause populations. Treatment for sarcopenia is mainly nonpharmacological, however, various drugs are currently being developed. It is conceivable that sarcopenia is the next immediate clinical target in musculoskeletal science.

Keywords

References

  1. Rosenberg IH. Summary comments. Am J Clin Nutr 1989;50: 1231-3. https://doi.org/10.1093/ajcn/50.5.1231
  2. Fearon K, Evans WJ, Anker SD. Myopenia-a new universal term for muscle wasting. J Cachexia Sarcopenia Muscle 2011;2:1-3. https://doi.org/10.1007/s13539-011-0025-7
  3. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci 2008;63:829-34. https://doi.org/10.1093/gerona/63.8.829
  4. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 2011;12:403-9. https://doi.org/10.1016/j.jamda.2011.04.014
  5. Correa-de-Araujo R, Hadley E. Skeletal muscle function deficit: a new terminology to embrace the evolving concepts of sarcopenia and age-related muscle dysfunction. J Gerontol A Biol Sci Med Sci 2014;69:591-4. https://doi.org/10.1093/gerona/glt208
  6. Anker SD, Coats AJ, Morley JE, Rosano G, Bernabei R, von Haehling S, et al. Muscle wasting disease: a proposal for a new disease classification. J Cachexia Sarcopenia Muscle 2014;5:1-3. https://doi.org/10.1007/s13539-014-0135-0
  7. Cao L, Morley JE. Sarcopenia is recognized as an independent condition by an International Classification of Disease, Tenth Revision, Clinical Modification (ICD-10-CM) Code. J Am Med Dir Assoc 2016;17:675-7. https://doi.org/10.1016/j.jamda.2016.06.001
  8. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 2006;294:50-66. https://doi.org/10.1016/j.ydbio.2006.02.022
  9. Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 2007;292:E151-7. https://doi.org/10.1152/ajpendo.00278.2006
  10. Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med 2015;39:155-62. https://doi.org/10.5535/arm.2015.39.2.155
  11. Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 1995;50 Spec No:11-6.
  12. Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R, Roubenoff R. Skeletal muscle fiber quality in older men and women. Am J Physiol Cell Physiol 2000;279:C611-8. https://doi.org/10.1152/ajpcell.2000.279.3.C611
  13. Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 2013;45:2191-9. https://doi.org/10.1016/j.biocel.2013.05.016
  14. Renganathan M, Messi ML, Delbono O. Dihydropyridine receptorryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol 1997;157:247-53. https://doi.org/10.1007/s002329900233
  15. Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci 2012;67:28-40.
  16. D'Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, et al. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 2003;552(Pt 2):499-511. https://doi.org/10.1113/jphysiol.2003.046276
  17. Ochala J, Frontera WR, Dorer DJ, Van Hoecke J, Krivickas LS. Single skeletal muscle fiber elastic and contractile characteristics in young and older men. J Gerontol A Biol Sci Med Sci 2007;62:375-81. https://doi.org/10.1093/gerona/62.4.375
  18. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, et al. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol (1985) 2001;90:2157-65. https://doi.org/10.1152/jappl.2001.90.6.2157
  19. Broskey NT, Greggio C, Boss A, Boutant M, Dwyer A, Schlueter L, et al. Skeletal muscle mitochondria in the elderly: effects of physical fitness and exercise training. J Clin Endocrinol Metab 2014;99:1852-61. https://doi.org/10.1210/jc.2013-3983
  20. Malafarina V, Uriz-Otano F, Iniesta R, Gil-Guerrero L. Sarcopenia in the elderly: diagnosis, physiopathology and treatment. Maturitas 2012;71:109-14. https://doi.org/10.1016/j.maturitas.2011.11.012
  21. Thomas DR. Adverse outcomes and functional consequences. Chichester (UK): John Wiley and Sons; 2012.
  22. Zamboni M, Rossi AP, Zoico E. Sarcopenic obesity. Chichester (UK): John Wiley and Sons; 2012.
  23. Kim NH, Kim HS, Eun CR, Seo JA, Cho HJ, Kim SG, et al. Depression is associated with sarcopenia, not central obesity, in elderly korean men. J Am Geriatr Soc 2011;59:2062-8. https://doi.org/10.1111/j.1532-5415.2011.03664.x
  24. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010;39:412-23. https://doi.org/10.1093/ageing/afq034
  25. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15:95-101. https://doi.org/10.1016/j.jamda.2013.11.025
  26. McLean RR, Kiel DP. Developing consensus criteria for sarcopenia: an update. J Bone Miner Res 2015;30:588-92. https://doi.org/10.1002/jbmr.2492
  27. Kwon HJ, Ha YC, Park HM. The reference value of skeletal muscle mass index for defining the sarcopenia of women in Korea. J Bone Metab 2015;22:71-5. https://doi.org/10.11005/jbm.2015.22.2.71
  28. Kim YS, Lee Y, Chung YS, Lee DJ, Joo NS, Hong D, et al. Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. J Gerontol A Biol Sci Med Sci 2012;67: 1107-13. https://doi.org/10.1093/gerona/gls071
  29. Kim TN, Yang SJ, Yoo HJ, Lim KI, Kang HJ, Song W, et al. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study. Int J Obes (Lond) 2009;33:885-92. https://doi.org/10.1038/ijo.2009.130
  30. Kwon HJ, Ha YC, Park HM. Prevalence of sarcopenia in the Korean woman based on the Korean National Health and Nutritional Examination Surveys. J Bone Metab 2016;23:23-6. https://doi.org/10.11005/jbm.2016.23.1.23
  31. Lee ES, Park HM. Prevalence of sarcopenia in healthy Korean elderly women. J Bone Metab 2015;22:191-5. https://doi.org/10.11005/jbm.2015.22.4.191
  32. Kalinkovich A, Livshits G. Sarcopenia: the search for emerging biomarkers. Ageing Res Rev 2015;22:58-71. https://doi.org/10.1016/j.arr.2015.05.001
  33. Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V. Muscle and bone, two interconnected tissues. Ageing Res Rev 2015; 21:55-70. https://doi.org/10.1016/j.arr.2015.03.002
  34. Gunton JE, Girgis CM, Baldock PA, Lips P. Bone muscle interactions and vitamin D. Bone 2015;80:89-94. https://doi.org/10.1016/j.bone.2015.02.029
  35. Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int 2017;28:2781-90. https://doi.org/10.1007/s00198-017-4151-8
  36. Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Gunawardene P, et al. Comprehensive nutritional status in sarcoosteoporotic older fallers. J Nutr Health Aging 2015;19:474-80. https://doi.org/10.1007/s12603-014-0543-z
  37. Sjoblom S, Suuronen J, Rikkonen T, Honkanen R, Kroger H, Sirola J. Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 2013;75:175-80. https://doi.org/10.1016/j.maturitas.2013.03.016
  38. Lim S, Kim JH, Yoon JW, Kang SM, Choi SH, Park YJ, et al. Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care 2010;33:1652-4. https://doi.org/10.2337/dc10-0107
  39. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm 2010;2010. pii: 289645.
  40. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011;29:415-45. https://doi.org/10.1146/annurev-immunol-031210-101322
  41. Zoico E, Corzato F, Bambace C, Rossi AP, Micciolo R, Cinti S, et al. Myosteatosis and myofibrosis: relationship with aging, inflammation and insulin resistance. Arch Gerontol Geriatr 2013;57:411-6. https://doi.org/10.1016/j.archger.2013.06.001
  42. Ormsbee MJ, Prado CM, Ilich JZ, Purcell S, Siervo M, Folsom A, et al. Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle 2014;5:183-92. https://doi.org/10.1007/s13539-014-0146-x
  43. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ. Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 2014;15:51-60. https://doi.org/10.1016/j.arr.2014.02.007
  44. Binkley N, Krueger D, Buehring B. What's in a name revisited: should osteoporosis and sarcopenia be considered components of "dysmobility syndrome?". Osteoporos Int 2013;24:2955-9. https://doi.org/10.1007/s00198-013-2427-1
  45. Lee WJ, Liu LK, Hwang AC, Peng LN, Lin MH, Chen LK. Dysmobility syndrome and risk of mortality for community-dwelling middle-aged and older adults: the nexus of aging and body composition. Sci Rep 2017;7:8785. https://doi.org/10.1038/s41598-017-09366-z
  46. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014;43:748-59. https://doi.org/10.1093/ageing/afu115
  47. Steffl M, Bohannon RW, Sontakova L, Tufano JJ, Shiells K, Holmerova I. Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging 2017;12:835-845. https://doi.org/10.2147/CIA.S132940
  48. Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007;116:572-84. https://doi.org/10.1161/CIRCULATIONAHA.107.185214
  49. Zembron-Lacny A, Dziubek W, Rogowski L, Skorupka E, Dabrowska G. Sarcopenia: monitoring, molecular mechanisms, and physical intervention. Physiol Res 2014;63:683-91.
  50. Wolfe RR. Regulation of muscle protein by amino acids. J Nutr 2002;132:3219S-3224S. https://doi.org/10.1093/jn/131.10.3219S
  51. Symons TB, Schutzler SE, Cocke TL, Chinkes DL, Wolfe RR, Paddon-Jones D. Aging does not impair the anabolic response to a protein-rich meal. Am J Clin Nutr 2007;86:451-6. https://doi.org/10.1093/ajcn/86.2.451
  52. Calvani R, Miccheli A, Landi F, Bossola M, Cesari M, Leeuwenburgh C, et al. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J Frailty Aging 2013;2:38-53.
  53. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROTAGE Study Group. J Am Med Dir Assoc 2013;14:542-59. https://doi.org/10.1016/j.jamda.2013.05.021
  54. Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 2014;33:929-36. https://doi.org/10.1016/j.clnu.2014.04.007
  55. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009;12:86-90. https://doi.org/10.1097/MCO.0b013e32831cef8b
  56. Rizzoli R, Stevenson JC, Bauer JM, van Loon LJ, Walrand S, Kanis JA, et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas 2014;79:122-32. https://doi.org/10.1016/j.maturitas.2014.07.005
  57. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2013;24:23-57. https://doi.org/10.1007/s00198-012-2074-y
  58. Rizzoli R, Boonen S, Brandi ML, Bruyere O, Cooper C, Kanis JA, et al. Vitamin D supplementation in elderly or postmenopausal women: a 2013 update of the 2008 recommendations from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr Med Res Opin 2013;29:305-13. https://doi.org/10.1185/03007995.2013.766162
  59. Lowe DA, Baltgalvis KA, Greising SM. Mechanisms behind estrogen's beneficial effect on muscle strength in females. Exerc Sport Sci Rev 2010;38:61-7. https://doi.org/10.1097/JES.0b013e3181d496bc
  60. Morley JE, Kaiser FE, Perry HM 3rd, Patrick P, Morley PM, Stauber PM, et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism 1997;46:410-3. https://doi.org/10.1016/S0026-0495(97)90057-3
  61. Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 1999;107:123-36. https://doi.org/10.1016/S0047-6374(98)00130-4
  62. Wittert GA, Chapman IM, Haren MT, Mackintosh S, Coates P, Morley JE. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J Gerontol A Biol Sci Med Sci 2003;58:618-25. https://doi.org/10.1093/gerona/58.7.M618
  63. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Mac RP, Lee M, et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab 2005;90:678-88. https://doi.org/10.1210/jc.2004-1184
  64. Mohler ML, Bohl CE, Jones A, Coss CC, Narayanan R, He Y, et al. Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem 2009;52:3597-617. https://doi.org/10.1021/jm900280m
  65. Basaria S, Collins L, Dillon EL, Orwoll K, Storer TW, Miciek R, et al. The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J Gerontol A Biol Sci Med Sci 2013;68:87-95. https://doi.org/10.1093/gerona/gls078
  66. Crawford J, Prado CM, Johnston MA, Gralla RJ, Taylor RP, Hancock ML, et al. Study Design and Rationale for the Phase 3 Clinical Development Program of Enobosarm, a Selective Androgen Receptor Modulator, for the Prevention and Treatment of Muscle Wasting in Cancer Patients (POWER Trials). Curr Oncol Rep 2016;18:37. https://doi.org/10.1007/s11912-016-0522-0
  67. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, et al. Effects of human growth hormone in men over 60 years old. N Engl J Med 1990;323:1-6. https://doi.org/10.1056/NEJM199007053230101
  68. Kim MJ, Morley JE. The hormonal fountains of youth: myth or reality? J Endocrinol Invest 2005;28(11 Suppl Proceedings):5-14.
  69. Liu H, Bravata DM, Olkin I, Nayak S, Roberts B, Garber AM, et al. Systematic review: the safety and efficacy of growth hormone in the healthy elderly. Ann Intern Med 2007;146:104-15. https://doi.org/10.7326/0003-4819-146-2-200701160-00005
  70. Baker WL, Karan S, Kenny AM. Effect of dehydroepiandrosterone on muscle strength and physical function in older adults: a systematic review. J Am Geriatr Soc 2011;59:997-1002. https://doi.org/10.1111/j.1532-5415.2011.03410.x
  71. Aubertin-Leheudre M, Lord C, Khalil A, Dionne IJ. Six months of isoflavone supplement increases fat-free mass in obese-sarcopenic postmenopausal women: a randomized double-blind controlled trial. Eur J Clin Nutr 2007;61:1442-4. https://doi.org/10.1038/sj.ejcn.1602695
  72. Wakabayashi H, Sakuma K. Comprehensive approach to sarcopenia treatment. Curr Clin Pharmacol 2014;9:171-80 https://doi.org/10.2174/1574884708666131111192845
  73. White HK, Petrie CD, Landschulz W, MacLean D, Taylor A, Lyles K, et al. Effects of an oral growth hormone secretagogue in older adults. J Clin Endocrinol Metab 2009;94:1198-206. https://doi.org/10.1210/jc.2008-0632
  74. Adunsky A, Chandler J, Heyden N, Lutkiewicz J, Scott BB, Berd Y, et al. MK-0677 (ibutamoren mesylate) for the treatment of patients recovering from hip fracture: a multicenter, randomized, placebocontrolled phase IIb study. Arch Gerontol Geriatr 2011;53:183-9. https://doi.org/10.1016/j.archger.2010.10.004
  75. Takayama K, Katakami N, Yokoyama T, Atagi S, Yoshimori K, Kagamu H, et al. Anamorelin (ONO-7643) in Japanese patients with non-small cell lung cancer and cachexia: results of a randomized phase 2 trial. Support Care Cancer 2016;24:3495-505. https://doi.org/10.1007/s00520-016-3144-z
  76. Adan RA, Tiesjema B, Hillebrand JJ, la Fleur SE, Kas MJ, de Krom M. The MC4 receptor and control of appetite. Br J Pharmacol 2006;149:815-27. https://doi.org/10.1038/sj.bjp.0706929
  77. Mosialou I, Shikhel S, Liu JM, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 2017;543:385-90. https://doi.org/10.1038/nature21697
  78. Ruiz Garcia V, Lopez-Briz E, Carbonell Sanchis R, Gonzalvez Perales JL, Bort-Marti S. Megestrol acetate for treatment of anorexia-cachexia syndrome. Cochrane Database Syst Rev 2013;(3):CD004310.
  79. Burton LA, Sumukadas D. Optimal management of sarcopenia. Clin Interv Aging 2010;5:217-28.
  80. Hutcheon SD, Gillespie ND, Crombie IK, Struthers AD, McMurdo ME. Perindopril improves six minute walking distance in older patients with left ventricular systolic dysfunction: a randomised double blind placebo controlled trial. Heart 2002;88:373-7. https://doi.org/10.1136/heart.88.4.373
  81. Peters R, Beckett N, Burch L, de Vernejoul MC, Liu L, Duggan J, et al. The effect of treatment based on a diuretic (indapamide) +/- ACE inhibitor (perindopril) on fractures in the Hypertension in the Very Elderly Trial (HYVET). Age Ageing 2010;39:609-16. https://doi.org/10.1093/ageing/afq071
  82. Morley JE, von Haehling S, Anker SD. Are we closer to having drugs to treat muscle wasting disease? J Cachexia Sarcopenia Muscle 2014;5:83-7. https://doi.org/10.1007/s13539-014-0149-7
  83. Lynch JE, Henderson NR, Ramage L, McMurdo ME, Witham MD. Association between statin medication use and improved outcomes during inpatient rehabilitation in older people. Age Ageing 2012;41:260-2. https://doi.org/10.1093/ageing/afr159
  84. Holecek M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle 2017;8:529-41. https://doi.org/10.1002/jcsm.12208
  85. Elkina Y, von Haehling S, Anker SD, Springer J. The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle 2011;2:143-151. https://doi.org/10.1007/s13539-011-0035-5
  86. Kung T, Szabo T, Springer J, Doehner W, Anker SD, von Haehling S. Cachexia in heart disease: highlights from the ESC 2010. J Cachexia Sarcopenia Muscle 2011;2:63-9. https://doi.org/10.1007/s13539-011-0020-z
  87. Morley JE. Pharmacologic options for the treatment of sarcopenia. Calcif Tissue Int 2016;98:319-33. https://doi.org/10.1007/s00223-015-0022-5
  88. Hwee DT, Kennedy A, Ryans J, Russell AJ, Jia Z, Hinken AC, et al. Fast skeletal muscle troponin activator tirasemtiv increases muscle function and performance in the B6SJL-SOD1G93A ALS mouse model. PLoS One 2014;9:e96921. https://doi.org/10.1371/journal.pone.0096921
  89. Shefner JM, Wolff AA, Meng L, Bian A, Lee J, Barragan D, et al. A randomized, placebo-controlled, double-blind phase IIb trial evaluating the safety and efficacy of tirasemtiv in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2016;17:426-35. https://doi.org/10.3109/21678421.2016.1148169
  90. Andrews JA, Miller TM, Vijayakumar V, Stoltz R, James JK, Meng L, et al. CK-2127107 amplifies skeletal muscle response to nerve activation in humans. Muscle Nerve 2018;57:729-34. https://doi.org/10.1002/mus.26017
  91. Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail 2016;9:e002206.
  92. Sirabella D, De Angelis L, Berghella L. Sources for skeletal muscle repair: from satellite cells to reprogramming. J Cachexia Sarcopenia Muscle 2013;4:125-36. https://doi.org/10.1007/s13539-012-0098-y

Cited by

  1. Protein Intake Recommendation for Korean Older Adults to Prevent Sarcopenia: Expert Consensus by the Korean Geriatric Society and the Korean Nutrition Society vol.22, pp.4, 2018, https://doi.org/10.4235/agmr.18.0046
  2. Receptor-Mediated Muscle Homeostasis as a Target for Sarcopenia Therapeutics vol.36, pp.3, 2018, https://doi.org/10.3803/enm.2021.1081