DOI QR코드

DOI QR Code

Improved dielectric properties and energy density of PVDF composites using PVP engineered BaTiO3 nanoparticles

  • Dai, Yu (School of Energy Science and Engineering, Central South University) ;
  • Zhu, Xiaojun (School of Energy Science and Engineering, Central South University)
  • Received : 2017.10.16
  • Accepted : 2018.03.15
  • Published : 2018.07.01

Abstract

his work systematically investigates the effect of modifier polyvinylpyrrolidone (PVP) on the microstructure, dielectric and energy storage properties of $BaTiO_3/PVDF$ composites. The results demonstrate that the $BaTiO_3$ nanoparticles modified by PVP are uniformly dispersed in the composites, and the defects including cracks and voids are obviously decreased in contrast to the composites with unmodified $BaTiO_3$ nanoparticles. Due to the enhanced interfacial polarization, the composites with $BaTiO_3@PVP$ show improved dielectric properties compared with the composites with unmodified $BaTiO_3$ nanoparticles. For instance, at 1 kHz, the dielectric constant and dielectric loss of the composite with 50 vol% of $BaTiO_3@PVP$ nanoparticles are 80.4 and 0.085, while of which the $BaTiO_3/PVDF$ are 35 and 0.265, respectively. The discharge energy density of the composites is largely improved with PVP engineered $BaTiO_3$ nanoparticles. The composite with 30 vol% $BaTiO_3@PVP$ achieves a discharged energy density of 4.06 J/cc at 240 kV/mm, which is 116% larger than that of pure PVDF (1.88 J/cc). This research provides an effect modifier to prepare high performance dielectric materials.

Keywords

Acknowledgement

Supported by : Hunan Provincial Education Department

References

  1. F. Liu, Q. Li, J. Cui, Z. Li, G. Yang, Y. Liu, L. Dong, C. Xiong, H. Wang and Q. Wang, Adv. Funct. Mater., 27, 1606292 (2017). https://doi.org/10.1002/adfm.201606292
  2. Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen and H. Wang, ACS Appl. Mater. Interfaces, 9, 4024 (2017). https://doi.org/10.1021/acsami.6b13663
  3. G. Wang, X. Huang and P. Jiang, ACS Appl. Mater. Interfaces, 9, 7547 (2017). https://doi.org/10.1021/acsami.6b14454
  4. Y. Hao, X. Wang, K. Bi, J. Zhang, Y. Huang, L. Wu, P. Zhao, K. Xu, M. Lei and L. Li, Nano Energy, 31, 49 (2017). https://doi.org/10.1016/j.nanoen.2016.11.008
  5. D. Zhang, W. Liu, L. Tang, K. Zhou and H. Luo, Appl. Phys. Lett., 110, 133902 (2017). https://doi.org/10.1063/1.4979407
  6. Z. Cai, X. Wang, B. Luo, W. Hong, L. Wu and L. Li, Compos. Sci. Technol., 145, 105 (2017). https://doi.org/10.1016/j.compscitech.2017.03.039
  7. S. Luo, Y. Shen, S. Yu, Y. Wan, W. Liao, R. Sun and C. Wong, Energy Environ. Sci., 10, 137 (2017). https://doi.org/10.1039/C6EE03190K
  8. Z.Y. Jiang, G.P. Zheng, X.C. Zheng and H. Wang, Polymers, 9, 315 (2017). https://doi.org/10.3390/polym9080315
  9. H. Luo, J. Roscow, X. Zhou, S. Chen, X. Han, K. Zhou, D. Zhang and C.R. Bowen, J. Mater. Chem. A, 5, 7091 (2017). https://doi.org/10.1039/C7TA00136C
  10. B. Xie, H. Zhang, Q. Zhang, J. Zang, C. Yang, Q. Wang, M. Li and S. Jiang, J. Mater. Chem. A, 5, 6070 (2017). https://doi.org/10.1039/C7TA00513J
  11. H. Zhu, Z. Liu and F. Wang, J. Mater. Sci., 52, 5048 (2017). https://doi.org/10.1007/s10853-016-0742-6
  12. W.-B. Li, D. Zhou and L.-X. Pang, Appl. Phys. Lett., 110, 132902 (2017). https://doi.org/10.1063/1.4979467
  13. Q. Huang, H. Luo, C. Chen, X. Zhou, K. Zhou and D. Zhang, J. Alloy Compd., 696, 1220 (2017). https://doi.org/10.1016/j.jallcom.2016.12.117
  14. D. Zhang, W.W. Liu, R. Guo, K.C. Zhou and H. Luo, Adv. Sci., 5, 1700512 (2018). https://doi.org/10.1002/advs.201700512
  15. Q. Li, F. Liu, T. Yang, M.R. Gadinski, G. Zhang, L.-Q. Chen and Q. Wang, Proc. Natl. Acad. Sci. U.S.A., 113, 9995 (2016). https://doi.org/10.1073/pnas.1603792113
  16. R. Su, Z. Luo, D. Zhang, Y. Liu, Z. Wang, J. Li, J. Bian, Y. Li, X. Hu and J. Gao, J. Phys. Chem. C, 120, 11769 (2016). https://doi.org/10.1021/acs.jpcc.6b01853
  17. H. Luo, D. Zhang, L. Wang, C. Chen, J. Zhou and K. Zhou, RSC Adv., 5, 52809 (2015). https://doi.org/10.1039/C5RA05748E
  18. D. Zhang, X. Zhou, J. Roscow, K. Zhou, L. Wang, H. Luo and C.R. Bowen, Sci. Rep., 7, 45179 (2017). https://doi.org/10.1038/srep45179
  19. H. Tang, Y. Lin and H. A. Sodano, Adv. Energy Mater., 2, 469 (2012). https://doi.org/10.1002/aenm.201100543
  20. H. Luo, C. Chen, K. Zhou, X. Zhou, Z. Wu and D. Zhang, RSC Adv., 5, 68515 (2015). https://doi.org/10.1039/C5RA11753D
  21. X. Lin, P. Hu, Z. Jia and S. Gao, J. Mater. Chem. A, 4, 2314 (2016). https://doi.org/10.1039/C5TA09547F
  22. H. Luo, Z. Wu, C. Chen, C. Ma, K. Zhou and D. Zhang, Compos. Part A, 86, 57 (2016). https://doi.org/10.1016/j.compositesa.2016.04.001
  23. H. Luo, K. Zhou, C. Bowen, F. Zhang, A. Wei, Z. Wu, C. Chen and D. Zhang, Adv. Mater. Interfaces, 3, 1600157 (2016). https://doi.org/10.1002/admi.201600157
  24. Z. Pan, L. Yao, J. Zhai, B. Shen, S. Liu, H. Wang and J. Liu, J. Mater. Chem. A, 4, 13259 (2016). https://doi.org/10.1039/C6TA05233A
  25. X. Zhang, Y. Shen, Z. Shen, J. Jiang, L. Chen and C.-W. Nan, ACS Appl. Mater. Interfaces, 8, 27236 (2016). https://doi.org/10.1021/acsami.6b10016
  26. S. Peng, Q. Zeng, X. Yang, J. Hu, X. Qiu and J. He, Sci. Rep., 6, 38978 (2016). https://doi.org/10.1038/srep38978
  27. G. Zhang, D. Brannum, D. Dong, L. Tang, E. Allahyarov, S. Tang, K. Kodweis, J. K. Lee and L. Zhu, Chem. Mater., 28, 4646 (2016). https://doi.org/10.1021/acs.chemmater.6b01383
  28. X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, J. Ma, Y. Lin and C.W. Nan, Adv. Mater., 28, 2055 (2016). https://doi.org/10.1002/adma.201503881
  29. L. Yao, Z. Pan, S. Liu, J. Zhai and H.D. Chen, ACS Appl. Mater. Interfaces, 8, 26343 (2016). https://doi.org/10.1021/acsami.6b09265
  30. P. Hu, Y. Song, H. Liu, Y. Shen, Y. Lin and C.-W. Nan, J. Mater. Chem. A, 1, 1688 (2013). https://doi.org/10.1039/C2TA00948J
  31. D. Zhang, C. Ma, X. Zhou, S. Chen, H. Luo, C.R. Bowen and K. Zhou, J. Phys. Chem. C, 121, 20075 (2017). https://doi.org/10.1021/acs.jpcc.7b03391
  32. L. Xie, X. Huang, K. Yang, S. Li and P. Jiang, J. Mater. Chem. A, 2, 5244 (2014). https://doi.org/10.1039/c3ta15156e
  33. K. Yang, X. Huang, Y. Huang, L. Xie and P. Jiang, Chem. Mater., 25, 2327 (2013). https://doi.org/10.1021/cm4010486
  34. F. Liu, Q. Li, Z. Li, Y. Liu, L. Dong, C. Xiong and Q. Wang, Compos. Sci. Technol., 142, 139 (2017). https://doi.org/10.1016/j.compscitech.2017.02.006
  35. Y. Li, M. Fan, K. Wu, F. Yu, S. Chai, F. Chen and Q. Fu, Compos. Part A, 73, 85 (2015). https://doi.org/10.1016/j.compositesa.2015.02.015
  36. Y. Song, Y. Shen, P. Hu, Y. Lin, M. Li and C.W. Nan, Appl. Phys. Lett., 101, 152904 (2012). https://doi.org/10.1063/1.4760228
  37. D. Zhang, Z. Wu, X. F. Zhou, A.Q. Wei, C. Chen and H. Luo, Sensor. Actuat. A, 260, 228 (2017). https://doi.org/10.1016/j.sna.2017.03.018
  38. Q. Chen, Y. Shen, S. Zhang and Q. M. Zhang, Annu. Rev. Mater. Res., 45, 433 (2015). https://doi.org/10.1146/annurev-matsci-070214-021017
  39. H. Luo, C. Ma, X. Zhou, S. Chen and D. Zhang, Macromolecules, 50, 5132 (2017). https://doi.org/10.1021/acs.macromol.7b00792
  40. K. Yang, X. Huang, M. Zhu, L. Xie, T. Tanaka and P. Jiang, ACS Appl. Mater. Interfaces, 6, 1812 (2014). https://doi.org/10.1021/am4048267
  41. L. Xie, X. Huang, Y. Huang, K. Yang and P. Jiang, ACS Appl. Mater. Interfaces, 5 1747 (2013). https://doi.org/10.1021/am302959n
  42. H. Luo, D. Zhang, C. Jiang, X. Yuan, C. Chen and K. Zhou, ACS Appl. Mater. Interfaces, 7, 8061 (2015). https://doi.org/10.1021/acsami.5b00555
  43. K. Yu, Y. J. Niu, Y. C. Zhou, Y.Y. Bai and H. Wang, .J. Am. Ceram. Soc., 96, 2519 (2013). https://doi.org/10.1111/jace.12338
  44. P. Kim, N.M. Doss, J.P. Tillotson, P. J. Hotchkiss, M. J. Pan, S.R. Marder, J.Y. Li, J. P. Calame and J.W. Perry, ACS Nano, 3, 2581 (2009). https://doi.org/10.1021/nn9006412
  45. H. X.Tang, Z. Zhou and H. A. Sodano, ACS Appl. Mater. Interfaces, 6, 5450 (2014). https://doi.org/10.1021/am405038r
  46. D. P. Almond and C.R. Bowen, Phys. Rev. Lett., 92, 157601 (2004). https://doi.org/10.1103/PhysRevLett.92.157601
  47. L. L. Sun, B. Li, Y. Zhao, G. Mitchell and W. H. Zhong, Nanotechnology, 21, 305702 (2010). https://doi.org/10.1088/0957-4484/21/30/305702
  48. Z. H. Yao, Z. Song, H. Hao, Z.Y. Yu, M. H. Cao, S. J. Zhang, M.T. Lanagan and H.X. Liu, Adv. Mater., 29, 1601727 (2017). https://doi.org/10.1002/adma.201601727
  49. Y. Thakur, T. Zhang, C. Iaco, T. Yang, J. Bernhol, L.Q. Chen, J. Runt and Q.M. Zhang, Nanoscale, 9, 10992 (2017). https://doi.org/10.1039/C7NR01932G
  50. S. Liu, S. Xue, W. Zhang, J. Zhai and G. Chen, J. Mater. Chem. A, 2, 18040 (2014). https://doi.org/10.1039/C4TA04051A
  51. X. Huang and P. Jiang, Adv. Mater., 27, 546 (2015). https://doi.org/10.1002/adma.201401310

Cited by

  1. Effects of the Particle Size of BaTiO 3 Fillers on Fabrication and Dielectric Properties of BaTiO 3 /Polymer/Al Films for Capacitor Energy-Storage Application vol.12, pp.3, 2018, https://doi.org/10.3390/ma12030439
  2. 수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과 vol.57, pp.6, 2018, https://doi.org/10.9713/kcer.2019.57.6.847
  3. TiO2-Seeded Hydrothermal Growth of Spherical BaTiO3 Nanocrystals for Capacitor Energy-Storage Application vol.10, pp.3, 2018, https://doi.org/10.3390/cryst10030202
  4. High-k Polymer Nanocomposite Materials for Technological Applications vol.10, pp.12, 2020, https://doi.org/10.3390/app10124249
  5. Piezocatalytic Tumor Therapy by Ultrasound‐Triggered and BaTiO3‐Mediated Piezoelectricity vol.32, pp.29, 2018, https://doi.org/10.1002/adma.202001976
  6. Nylon 10-12-based ferroelectric capacitor for energy storage vol.10, pp.9, 2018, https://doi.org/10.1063/5.0015111
  7. Probing the Interface Activation in Designing Defect-Free Multilayered Polymer Nanocomposites for Dielectric Capacitor Applications vol.124, pp.42, 2018, https://doi.org/10.1021/acs.jpcc.0c05833