DOI QR코드

DOI QR Code

The Korean Integrated Model (KIM) System for Global Weather Forecasting

  • Hong, Song-You (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Kwon, Young Cheol (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Kim, Tae-Hun (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Kim, Jung-Eun Esther (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Choi, Suk-Jin (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Kwon, In-Hyuk (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Kim, Junghan (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Lee, Eun-Hee (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Park, Rae-Seol (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Kim, Dong-Il (Korea Institute of Atmospheric Prediction Systems (KIAPS))
  • Received : 2018.03.06
  • Accepted : 2018.06.15
  • Published : 2018.06.30

Abstract

The Korea Institute of Atmospheric Prediction Systems (KIAPS) began a national project to develop a new global atmospheric model system in 2011. The ultimate goal of this 9-year project is to replace the current operational model at the Korea Meteorological Administration (KMA), which was adopted from the United Kingdom's Meteorological Office's unified model (UM) in 2010. The 12-km Korean Integrated Model (KIM) system, consisting of a spectral-element non-hydrostatic dynamical core on a cubed sphere grid and a state-of-the-art physics parameterization package, has been launched in a real-time forecast framework, with initial conditions obtained via the advanced hybrid four-dimensional ensemble variational data assimilation (4DEnVar) over its native grid. A development strategy for KIM and the evolution of its performance in medium-range forecasts toward a world-class global forecast system are described. Outstanding issues in KIM 3.1 as of February 2018 are discussed, along with a future plan for operational deployment in 2020.

Keywords

References

  1. ACEC (Advanced Computing Evaluation Committee), 2016: NGGPS phase-2 Benchmarks and Software Evaluation. AVEC Rep., 13 pp.
  2. Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Proc. Eighth Conference on Numerical Weather Prediction, Baltimore, USA, Amer. Meteor. Soc. 726-733.
  3. Bae, S.-Y., S.-Y. Hong, and K.-S. Lim, 2016: Coupling WRF doublemoment 6-class microphysics schemes to RRTMG radiation scheme in weather research and forecasting Model. Adv. Meteor., 2016, 5070154, doi:10.1155/2016/5070154.
  4. Baek, S., 2017: A revised radiation package of G-packed McICA and twostream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9, 1628-1640, doi:10.1002/2017MS000994.
  5. Bonavita, M., L. Isaksen, and E. Holm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 1540-1559, doi:10.1002/qj.1899.
  6. Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 2532-2559, doi:10.1175/MWR-D-14-00354.1.
  7. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model Implementation and Sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
  8. Cheong, H.-B., 2006: A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Mon. Wea. Rev., 134, 1299-1315. https://doi.org/10.1175/MWR3121.1
  9. Choi, H.-J., and H.-Y. Chun, 2011: Momentum flux spectrum of convective gravity waves. Part I: an update of a parameterization using mesoscale simulations. J. Atmos. Sci., 68, 739-759, doi:10.1175/2010-JAS3552.1.
  10. Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast. J. Geophys. Res., 120, 12445-12457, doi:10.1002/2015JD024230.
  11. Choi, H.-J., S.-J. Choi, M.-S. Koo, J.-E. Kim, Y. C. Kwon, and S.-Y. Hong, 2017: Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J. Geophys. Res., 122, 10669-10678, doi:10.1002/ 2017JD026696.
  12. Choi, H.-J., J.-Y. Han, M.-S. Koo, H.-Y. Chun, Y.-H. Kim, and S.-Y. Hong, 2018: Effects of non-orographic gravity wave drag on seasonal and medium-range predictions in a global model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0023-1.
  13. Choi, S.-J., 2018: Structure of Eigenvalues in the advection-diffusion equation by the spectral element method on a cubed-sphere grid (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0020-4.
  14. Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.
  15. Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717-2731, doi:10.5194/gmd-7-2717-2014.
  16. Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299-3310. https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2
  17. Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 1445-1461, doi:10.1002/qj.2054.
  18. Dennis, J., J. Edwards, K. J. Evans, O. N. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor, and P. H. Worly, 2011: CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int. J. High Perform Comput. Appl., 26, 74-89, doi:10.1177/1094342011428142, doi:10.1177/1094342011428142.
  19. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, D22, doi:10.1029/2002JD003296.
  20. Giraldo, F. X., J. F. Kelly, and E. M. Constantinescu, 2013: Implicit-Explicit Formulations for a 3D Nonhydrostatic Unified Model of the Atmosphere (NUMA). SIAM J. Sci. Comput., 35, B1162-B1194, doi:10.1137/120876034.
  21. Govett, M., and Coauthors, 2017: Parallelization and performance of the NIM weather model on CPU, GPU, and MIC processors. Bull. Amer. Meteor. Soc., 98, 2201-2213, doi:10.1175/BAMS-D-15-00278.1.
  22. Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520-533, doi:10.1175/WAF-D-10-05038.1.
  23. Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi:10.1175/MWR-D-15-0255.1.
  24. Haywood, J., 2009: The strategy for aerosols and dust in climate, weather and air quality forecasting. MOSAC-14, Paper No. 14.11, 15 pp.
  25. Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481-1496, doi:10.1002/qj.665.
  26. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
  27. Hong, S.-Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6-ES9, doi:10.1175/2011BAMS3224.1.
  28. Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83-104, doi:10.1007/s13143-014-0029-2.
  29. Hong, S.-Y., and J. Jang, 2018: Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0013-3.
  30. Hong, S.-Y., J. Duhdia, and S.-H. Chen, 2004: A revised approach to icemicrophysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  31. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  32. Hong, S.-Y., J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lowertropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523-531. https://doi.org/10.1175/2007WAF2007030.1
  33. Hong, S.-Y., and Coauthors, 2013a: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.
  34. Hong, S.-Y., M. Koo, J. Jang, J. Esther Kim, H. Park, M. Joh, J. Kang, and T. Oh, 2013b: An evaluation of the system software dependency of a global spectral model. Mon. Wea. Rev., 141, 4165-4172, doi:10.1175/MWR-D-12-00352.1.
  35. Iacono, M.-J., J. S. Delamere, E. J. Mlawer, M. W. Shepherd, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculation with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
  36. Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univsersity Press, 341 pp.
  37. Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4, 335-342, https://doi.org/10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.
  38. Kanamitsu, M., K. Tada, T. Kuo, N. Sato and S. Isa, 1983: Description of the JMA operational spectral model. J. Meteor. Soc. Japan, 61, 812-828. https://doi.org/10.2151/jmsj1965.61.6_812
  39. Kang, H.-G., and H.-B. Cheong, 2017: An efficient implementation of a high-order filter for a cubed-sphere spectral element model. J. Comput. Phys., 332, 66-82, doi:10.1016/j.jcp.2016.12.001.
  40. Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0030-2.
  41. Kim, E.-J., and S.-Y. Hong, 2010: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.
  42. Kim, J, Y. C. Kwon, and T.-H. Kim, 2018a: A scalable high-performance I/O System for a numerical weather forecast model on the cubed-sphere grid (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0021-3.
  43. Kim, K.-H., P.-S. Shim, S. Shin, and J. Kim, 2018b: A simple method to find a neighboring grid point on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0027-x.
  44. Kim, S.-Y., and S.-Y. Hong, 2018: The use of partial cloudiness in a bulk cloud microphysics scheme: Concept and 2D results (in press). J. Atmos. Sci., doi:10.1175/JAS-D-17-0234.1.
  45. Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875-1902. https://doi.org/10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2
  46. Koo, M.-S., and S.-Y. Hong, 2014: Stochastic representation of dynamic model tendency: Formulation and preliminary results. Asia-Pac. J. Atmos. Sci., 50, 497-506, doi:10.1007/s13143-014-0039-0.
  47. Koo, M.-S., S. Baek, K.-H. Seol, and K. Cho, 2017: Advances in land surface modeling of KIAPS based on the Noah land surface model. Asia-Pac. J. Atmos. Sci., 53, 361-373, doi:10.1007/s13143-017-0043-2.
  48. Koo, M.-S., H.-J. Choi, and J.-Y. Han, 2018: A parameterization of turbulentscale orographic form drag in a global atmospheric model. AOGS 15th Annual Meeting, Honolulu, Hawaii, United States, AS20-A039 [Available online at http://www.asiaoceania.org/aogs2018/doc/AOGS2018_prgbook.pdf].
  49. Kwon, I.-H., S. English, W. Bell, R. Potthast, A. Collard, and B. Ruston, 2018: Assessment of progress and status of data assimilation in numerical weather prediction. Bull. Amer. Soc., 99, ES75-ES79, doi:10.1175/BAMS-D-17-0266.1.
  50. Kwon, I.-H., and Coauthors, 2018: Development of operational hybrid data assimilation system at KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0029-8.
  51. Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi:10.1175/MWR-D-16-0034.1.
  52. Lee, E.-H., E. Lee, R. Park, Y.-C. Kwon, and S.-Y. Hong, 2018: Impact of turbulent Mmixing in the stratocumulus-topped boundary layer on numerical weather prediction (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0024-0.
  53. Lim, K.-S., S.-Y. Hong, J.-H. Yoon, and J. Han, 2014: Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolution. Wea. Forecasting, 29, 1143-1154, doi:10.1175/WAF-D-13-00143.1.
  54. Lin, S.-J., L. Harris, X. Chen. W. Yao, and J. Chai, 2017: Colliding modons: A nonlinear test for the evaluation of global dynamical cores. J. Adv. Model. Earth Syst., 9, 2483-2492, doi:10.1002/2017MS000965.
  55. Long, P. E., 1984: A general unified similarity theory for the calculation of turbulent fluxes in numerical weather prediction models for unstable conditions. NCEP Office Note 302, 30 pp.
  56. Long, P. E., 1986: An economical and compatible scheme for parameterizing the stable surface layer in the medium range forecast model. NCEP Office Note 321, 24 pp.
  57. Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212-229, doi:10.1175/MWR-D-14-00195.1.
  58. Mahrt, L., 2008: Bulk formulation of surface fluxes extended to weakwind stable conditions. Quart. J. Roy. Meteorol. Soc., 134, 1-10. https://doi.org/10.1002/qj.197
  59. Majewski, D., D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, W. Wergen, and J. Baumgardner, 2002: The operational global icosahedral-hexagonal gridpoint model GME: Description and highresolution tests. Mon. Wea. Rev., 130, 319-338. https://doi.org/10.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2
  60. McFarlane, N. A., 1987: The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere. J. Atmos. Sci., 44, 1775-1800. https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2
  61. McNally, T., M. Bonvita, and J.-N. The ipaut, 2014: The role of satellite data in the forecasting of Hurricane Sandy. Mon. Wea. Rev., 142, 634-646, doi:10.1175/MWR-D-13-00170.1.
  62. Park, H., S.-Y. Hong, H.-B. Cheong, and M.-S. Koo, 2013: A double Fourier series (DFS) dynamic core in a global atmospheric model with full physics. Mon. Wea. Rev., 141, 3052-3061, doi:10.1175/MWR-D-12-00270.1.
  63. Park, R.-S., J.-H. Chae, and S.-Y. Hong, 2016: A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Wea. Rev., 144, 1219-1229, doi:10.1175/MWR-D-15-0273.1.
  64. Rabier, F., 2005: Overview of global data assimilation developments in numerical weather prediction centres. Quart. J. Roy. Meteor. Soc., 131, 3215-3233, doi:10.1256/qj.05.129.
  65. Randall, D. A., R. Heikes, and T. Ringer, 2000: General Circulation Model Development. Academic Press, 416 pp.
  66. Sela, J. G., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev., 108, 1279-1292. https://doi.org/10.1175/1520-0493(1980)108<1279:SMATNM>2.0.CO;2
  67. Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136-144. https://doi.org/10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2
  68. Shin, H. H., and S.-Y. Hong, 2013: Analysis on resolved and parameterized vertical transport in convective boundary layers at gray-zone resolution. J. Atmos. Sci., 70, 3248-3261, doi:10.1175/JAS-D-12-0290.1.
  69. Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1.
  70. Shin, S., and Coauthors, 2018: Real data assimilation using the Local Ensemble Transform Kalman Filter (LETKF) system for a global nonhydrostatic NWP model on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi: 10.1007/s13143-018-0022-2.
  71. Song, H.-J., and I.-H. Kwon, 2015: Spectral transformation using a cubedsphere grid for a three-dimensional variational data assimilation system. Mon. Wea. Rev., 143, 2581-2599, doi:10.1175/MWR-D-14-00089.1.
  72. Song, H.-J., S. Shin, J.-H. Ha, and S. Lim, 2017: The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditions. J. Geophys. Res., 122, 12226-12244, doi:10.1002/2017JD027598.
  73. Song, H.-J., J.-H. Ha, I.-H. Kwon, J. Kim, and J. Kwun, 2018: Multiresolution Hybrid Data Assimilation Core on a Cubed-sphere Grid (HybDA). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0018-y.
  74. Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 3019-3032. https://doi.org/10.1175/MWR2830.1
  75. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.
  76. Skamarock, W. C., J. B. Klemp, M.G. Duda, L.D. Fowler, S. Park, and T.D. Ringler, 2012: A multi-scale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon. Wea. Rev., 140, 3090-3105, doi:10.1175/MWR-D-11-00215.1.
  77. Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92-108. https://doi.org/10.1006/jcph.1996.5554
  78. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779-1800. https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
  79. Tiedtke, M., 1993: Representation of clouds in large-scale models, Mon. Wea. Rev., 121, 3040-3061. https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
  80. Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357-400. https://doi.org/10.1016/j.fluiddyn.2004.03.003
  81. Viterbo, P., A. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteorol. Soc., 125, 2401-2426. https://doi.org/10.1002/qj.49712555904
  82. Warner, C. D. and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 1837-1857. https://doi.org/10.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2
  83. Wedi, N. P., M. Hamrud, and G. Mozdzynski, 2013: A fast spherical harmonics transform for global NWP and climate models. Mon. Wea. Rev., 141, 3450-3461, doi:10.1175/MWR-D-13-00016.1.
  84. Wilson, D. R. and D. Gregory, 2003: The behaviour of large-scale model cloud schemes under idealized forcing scenarios. Quart. J. Roy. Meteorol. Soc., 129, 967-986. https://doi.org/10.1256/qj.02.74
  85. Winton, M., 2000: A Reformulated Three-Layer Sea Ice Model. J. Atmos. Oceanic Technol., 17, 525-531. https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2
  86. Zangl, G., D. Reinert, M.-P. Ripodas, and M. Baldauf, 2014: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563-579, doi:10.1002/qj.2378.
  87. Zeng, X., Z. Wang, and A. Wang, 2012: Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regions. J. Hydrometeor., 13, 1359-1370, doi:10.1175/JHM-D-11-0117.1.

Cited by

  1. Potential of Voronoi Diagram for the Conserved Remapping of Precipitation vol.146, pp.7, 2018, https://doi.org/10.1175/mwr-d-17-0350.1
  2. Multi-resolution Hybrid Data Assimilation Core on a Cubed-sphere Grid (HybDA) vol.54, pp.1, 2018, https://doi.org/10.1007/s13143-018-0018-y
  3. A Scalable High-Performance I/O System for a Numerical Weather Forecast Model on the Cubed-Sphere Grid vol.54, pp.1, 2018, https://doi.org/10.1007/s13143-018-0021-3
  4. Real Data Assimilation Using the Local Ensemble Transform Kalman Filter (LETKF) System for a Global Non-hydrostatic NWP model on the Cubed-sphere vol.54, pp.1, 2018, https://doi.org/10.1007/s13143-018-0022-2
  5. Development of an Operational Hybrid Data Assimilation System at KIAPS vol.54, pp.1, 2018, https://doi.org/10.1007/s13143-018-0029-8
  6. Development of an Observation Processing Package for Data Assimilation in KIAPS vol.54, pp.1, 2018, https://doi.org/10.1007/s13143-018-0030-2
  7. 앙상블 자료동화 시스템에서 ASCAT 해상풍 자료동화가 분석장에 미치는 효과 분석 vol.28, pp.3, 2018, https://doi.org/10.14191/atmos.2018.28.3.263
  8. New Optical Properties of Ice Crystals for Multiclass Cloud Microphysics vol.10, pp.11, 2018, https://doi.org/10.1029/2018ms001398
  9. The Implications for Radiative Cloud Forcing via the Link Between Shallow Convection and Planetary Boundary Layer Mixing vol.123, pp.23, 2018, https://doi.org/10.1029/2018jd028678
  10. 항공기 온도 관측 자료의 편향 보정 Part I: 존데와 비교를 통한 온도 편향 특성 분석 vol.28, pp.4, 2018, https://doi.org/10.14191/atmos.2018.28.4.357
  11. Effects of the wind-mass balance constraint on ensemble forecasts in the hybrid‐4DEnVar vol.145, pp.719, 2018, https://doi.org/10.1002/qj.3440
  12. Extended representation of wind-mass correlation by ensemble forecasting for data assimilation vol.145, pp.722, 2018, https://doi.org/10.1002/qj.3541
  13. Consistency between the cloud and radiation processes in a numerical forecasting model vol.131, pp.5, 2018, https://doi.org/10.1007/s00703-018-0647-9
  14. Impact of Increased Vertical Resolution on Medium-Range Forecasts in a Global Atmospheric Model vol.147, pp.11, 2019, https://doi.org/10.1175/mwr-d-18-0387.1
  15. Existence of multiple scales in uncertainty of numerical weather prediction vol.9, pp.1, 2018, https://doi.org/10.1038/s41598-019-52157-x
  16. Effects of Modified Surface Roughness Length over Shallow Waters in a Regional Model Simulation vol.10, pp.12, 2018, https://doi.org/10.3390/atmos10120818
  17. Verification of the Time-Split Method for Higher-Order Diffusion in the Spectral Element Method Model on a Cubed-Sphere Grid vol.56, pp.1, 2018, https://doi.org/10.1007/s13143-019-00137-6
  18. A Tropical Cyclone Initialization in Multi-Scale Localization with Hybrid Four Dimensional Ensemble-Variational System: Preliminary Results vol.16, pp.None, 2018, https://doi.org/10.2151/sola.2020-025
  19. 앙상블 기반 관측 자료에 따른 예측 민감도 모니터링 시스템 구축 및 평가 vol.30, pp.2, 2020, https://doi.org/10.14191/atmos.2020.30.2.103
  20. Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis vol.11, pp.7, 2020, https://doi.org/10.3390/atmos11070704
  21. All‐sky microwave humidity sounder assimilation in the Korean Integrated Model forecast system vol.146, pp.732, 2018, https://doi.org/10.1002/qj.3862
  22. On the Consequences of PBL Scheme Diffusion on UTLS Wave and Turbulence Representation in High-Resolution NWP Models vol.148, pp.10, 2018, https://doi.org/10.1175/mwr-d-20-0102.1
  23. COnstraining ORographic Drag Effects (COORDE): A Model Comparison of Resolved and Parametrized Orographic Drag vol.12, pp.11, 2018, https://doi.org/10.1029/2020ms002160
  24. Model Error Representation Using the Stochastically Perturbed Hybrid Physical-Dynamical Tendencies in Ensemble Data Assimilation System vol.10, pp.24, 2018, https://doi.org/10.3390/app10249010
  25. 한국형모델의 항공기 관측 온도의 정적 편차 보정 연구 vol.30, pp.4, 2018, https://doi.org/10.14191/atmos.2020.30.4.319
  26. Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): organization and experimental design vol.14, pp.7, 2018, https://doi.org/10.5194/gmd-14-4465-2021
  27. A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Kor vol.14, pp.10, 2018, https://doi.org/10.5194/gmd-14-6241-2021
  28. Impact of Different Nesting Methods on the Simulation of a Severe Convective Event Over South Korea Using the Weather Research and Forecasting Model vol.126, pp.5, 2018, https://doi.org/10.1029/2020jd033084
  29. WRF 모형에서 한반도 여름철 강수 예측에 모의영역이 미치는 영향 vol.31, pp.1, 2018, https://doi.org/10.14191/atmos.2021.31.1.017
  30. Seasonal Performance of a Nonhydrostatic Global Atmospheric Model on a Cubed‐Sphere Grid vol.8, pp.4, 2018, https://doi.org/10.1029/2021ea001643
  31. Origin, Variability, and Pathways of East Sea Intermediate Water in a High‐Resolution Ocean Reanalysis vol.126, pp.6, 2021, https://doi.org/10.1029/2020jc017158
  32. Impact of Soil Moisture Data Assimilation on Analysis and Medium-Range Forecasts in an Operational Global Data Assimilation and Prediction System vol.12, pp.9, 2018, https://doi.org/10.3390/atmos12091089
  33. Suppressing Grid-Point Storms in a Numerical Forecasting Model vol.12, pp.9, 2018, https://doi.org/10.3390/atmos12091194
  34. Role of Microphysics and Convective Autoconversion for the Better Simulation of Tropical Intraseasonal Oscillations (MISO and MJO) vol.13, pp.10, 2021, https://doi.org/10.1029/2021ms002540
  35. Improved Weather Forecasting Using Neural Network Emulation for Radiation Parameterization vol.13, pp.10, 2018, https://doi.org/10.1029/2021ms002609
  36. Hazardous flight region prediction for a small UAV operated in an urban area using a deep neural network vol.118, pp.None, 2018, https://doi.org/10.1016/j.ast.2021.107060
  37. AMIP Simulations of a Global Model for Unified Weather‐Climate Forecast: Understanding Precipitation Characteristics and Sensitivity Over East Asia vol.13, pp.11, 2018, https://doi.org/10.1029/2021ms002592
  38. A New Hybrid Sigma-Pressure Vertical Coordinate with Smoothed Coordinate Surfaces vol.149, pp.12, 2021, https://doi.org/10.1175/mwr-d-21-0086.1
  39. A New Hybrid Sigma-Pressure Vertical Coordinate with Smoothed Coordinate Surfaces vol.149, pp.12, 2021, https://doi.org/10.1175/mwr-d-21-0086.1