DOI QR코드

DOI QR Code

Analysis Technique for Moving Targets on Single-Channel Airborne FMCW-SAR Image

항공기 기반 단일채널 FMCW-SAR 영상 내 이동물체 분석기법

  • Hwang, Ji-hwan (School of Earth and Environmental Science, Seoul National University) ;
  • Kim, Duk-jin (School of Earth and Environmental Science, Seoul National University)
  • 황지환 (서울대학교 지구환경과학부) ;
  • 김덕진 (서울대학교 지구환경과학부)
  • Received : 2017.09.22
  • Accepted : 2018.07.03
  • Published : 2018.07.31

Abstract

An analysis technique for detecting moving targets on a single-channel airborne frequency-modulated continuous-wave (FMCW) technology and synthetic aperture radar (SAR) image is presented. To analyze the relative velocities of moving targets, an FMCW-based signal model for stationary and moving targets was studied, and a SAR ambiguity function considering its signal model was simulated. The relative velocities of the moving targets on a reconstructed SAR image can be estimated by peak searching of the SAR ambiguity function, and the stationary and moving targets are easily distinguished when there is a large variation of the relative velocity. Analysis results of the moving targets on a reconstructed FMCW-SAR image, using practical airborne data and a SAR ambiguity process, are compared with the in situ testing in the study area.

본 논문에서는 항공기 기반 단일채널 FMCW-SAR(frequency modulated continuous wave - synthetic aperture radar) 복원영상 내 이동물체 분석을 위해 합성개구레이다의 모호성 함수(SAR ambiguity function)를 이용한 상대속도 분석기법에 대해 설명한다. 안테나와 이동물체 간의 상대속도 변화를 분석하기 위해서 FMCW 신호모델 기반 정지 이동물체 간 신호변환특성을 분석하고, 이동물체의 변환특성을 고려한 모호성 함수를 모의실험하였다. 복원영상 내 이동물체의 상대속도 변화는 도식화된 모호성 함수의 최고점으로부터 추정될 수 있으며, 상대속도의 변화가 클수록 정지 이동물체 구분이 가능하게 된다. 이를 실제 항공기 기반 관측 자료로부터 복원된 FMCW-SAR 영상에 적용하여 모호성 함수를 이용한 이동물체 식별과 상대속도 분석결과를 관측지역 내 실험조건과 비교분석하였다.

Keywords

References

  1. A. Meta, P. Hoogeboom, and L. P. Ligthart, "Signal processing for FMCW SAR," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 11, pp. 3519-3532, Nov. 2007. https://doi.org/10.1109/TGRS.2007.906140
  2. E. C. Zaugg, D. G. Long, "Generalized frequency scaling and backprojection for LFM-CW SAR processing," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 7, pp. 3600-3614, Jul. 2015. https://doi.org/10.1109/TGRS.2014.2380154
  3. E. C. Zaugg, D. G. Long, "Theory and application of motion compensation for LFM-CW SAR," IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 10, pp. 2990-2998, Oct. 2008. https://doi.org/10.1109/TGRS.2008.921958
  4. 황지환, 정정교, 김덕진, 김진우, 신희섭, 옥재우, "항공기 기반 FMCW-SAR 시스템의 연속이동효과 보정," 한국전자파학회논문지, 28(5), pp. 410-418, 2017년 5월. https://doi.org/10.5515/KJKIEES.2017.28.5.410
  5. D. J. Kim, J. Jung, K. M. Kang, S. H. Kim, Z. Xu, and S. Hensley, et al., "Development of a cost-effective airborne remote sensing system for coastal monitoring," Sensors, vol. 15, no. 10, pp. 25366-25384, 2015. https://doi.org/10.3390/s151025366
  6. M. Soumekh, D. A. Nobles, M. C. Wicks, and G. J. Genello, "Signal processing of wide bandwidth and wide beamwidth P-3 SAR data," IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1122-1141, Oct. 2001. https://doi.org/10.1109/7.976954
  7. M. Soumekh, "Moving target detection in foliage using along track monopulse synthetic aperture radar imaging," IEEE Transactions on Image Processing, vol. 6, no. 8, pp. 1148-1163, Aug. 1997. https://doi.org/10.1109/83.605412
  8. M. Soumekh, "Moving target detection and imaging using an X band along-track monopulse SAR," IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 1, pp. 315-333, Jan. 2002. https://doi.org/10.1109/7.993255
  9. M. Soumekh, Synthetic Aperture Radar Signal Processing with Matlab Algorithm, John Wiley & Sons, Inc., pp. 47-135, 1999.
  10. M. I. Skolnik, Radar Handbook, 3rd ed. McGraw-Hill Inc., New York, 2008.
  11. I. G. Cumming, F. H. Wong, Digital Processing of Synthetic Aperture Radar Data, Artech House, Boston/London, pp. 40-112, 2005.