DOI QR코드

DOI QR Code

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare

스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향

  • 조현승 (연세대학교 의류환경학과 BK21Plus 사업단) ;
  • 구혜란 (연세대학교 의류환경학과 BK21Plus 사업단) ;
  • 양진희 (연세대학교 심바이오틱라이프텍연구원) ;
  • 이강휘 (건국대학교 과학기술대학 의학공학과) ;
  • 김상민 (건국대학교 과학기술대학 의학공학과) ;
  • 이정환 (건국대학교 과학기술대학 의학공학과) ;
  • 곽휘권 (한화시스템(주)) ;
  • 고윤수 (한화시스템(주)) ;
  • 오윤중 (국방과학연구소) ;
  • 박서연 (연세대학교 생활과학대학 의류환경학과) ;
  • 김신혜 (연세대학교 생활과학대학 의류환경학과) ;
  • 이주현 (연세대학교 생활과학대학 의류환경학과)
  • Received : 2018.11.11
  • Accepted : 2018.12.13
  • Published : 2018.12.31

Abstract

The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

본 연구의 목적은 스마트 헬스케어를 위해 접촉식 직물전극의 구조가 심장활동 신호 획득에 미치는 영향을 연구하는 것이다. 본 연구에서는 심장활동 신호 측정을 위하여 전극의 크기와 구성방식을 조작한 6종의 접촉식 직물전극을 컴퓨터 자수 방식으로 구현하였고, 이를 가슴밴드에 부착하여 응용형 리드 II(modified Lead II) 방식으로 심장활동 신호를 검출하였다. 건강한 신체의 남성 4명을 대상으로 서서 정지한 자세에서 각 직물전극을 사용하여 심장활동 신호를 검출하였으며, 모든 유형의 전극에 걸쳐 4회씩 반복측정 하였다. 심장활동 신호의 수집을 위해 BIOPAC ECG100 장비를 사용하여 1 kHz로 샘플링하였으며, 검출된 원 신호를 대역통과 필터를 사용하여 필터링하였다. 직물전극의 구조에 따른 심장활동 신호 획득의 성능을 비교하기 위하여 신호의 파형과 크기를 파라미터로 하여 정성적 분석을 실시하였고, 각 전극을 통하여 획득된 심장활동 신호의 SPR(signal power ratio)을 산출함으로써 정량적 분석을 실시하였다. 산출된 SPR 값을 대상으로 하여 비모수 통계분석 방식의 차이검정과 사후검정을 실시함으로써 6개 전극의 구조에 따른 심장활동 신호 획득의 성능 차이를 구체적으로 분석하였다. 연구 결과 접촉식 직물전극의 구조에 따라 심장활동 신호의 품질에는 정성적, 정량적 측면에 걸쳐 모두 주요한 차이가 있는 것이 고찰되었다. 접촉식 직물전극의 구성 측면에 있어서는 입체전극이 평면전극에 비해 더 우수한 품질의 신호가 검출되는 것으로 나타났다. 한편 3가지 전극 크기에 따른 심장활동 신호 획득의 유의한 성능 차이는 발견되지 않았다. 이러한 결과는 심장활동 신호 획득을 위한 접촉식 직물전극 구조의 두 가지 요건 중 구성방식(평면/입체)이 웨어러블 헬스케어를 위한 심장활동 신호 획득의 성능에 주요한 영향을 미치는 것을 시사한다. 본 연구 결과를 기반으로 후속 연구에서는 직물전극이 일체형으로 통합된 의복형 플랫폼을 구현하고 성능 고도화 방안을 연구함으로써, 시공간의 제약 없이 고품질의 심장활동 모니터링이 가능한 스마트 의류 기술을 개발하고자 한다.

Keywords

References

  1. Association of Research on medical instrumentation engineering (2002). 의용계측공학 [Medical instrumentation engineering]. Seoul: Yoemingak, 189-196, 322-323.
  2. Borges, L. M., Rente, A., Velez, F. J., Salvador, L. R., Lebres, A. S., Oliveira, J. M., Araujo, P., & Ferro, J. (2008). Overview of progress in Smart-Clothing project for health monitoring and sport applications. 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, Aalborg, Denmark, 25-28 Oct. 2008. DOI: 10.1109/ISABEL.2008.4712605
  3. Chan, M., Esteve, D., Fourniols, J. Y., Escriba, C., Campo, E. (2012). Smart wearable systems: Current status and future challenges, Artificial Intelligence in Medicine 56(3), 137-156. DOI: 10.1016/j.artmed.2012.09.003
  4. Cho, H. K. (2011). A design of the modular clothing for ECG monitoring with optimal positions of electrodes. (Doctoral dissertation). Yonsei University, Seoul, Korea.
  5. Cho, H. K., & Lee, J. H. (2015). A study on the optimal positions of ECG electrodes in a garment for the design of ECG-monitoring clothing for male. Journal of Medical Systems, 39:95, First Online: 08 August 2015. DOI: 10.1007/s10916-015-0279-2
  6. Cho, H. S., Koo, S. M., Lee, J. H., Cho, H. K., Kang, D. H., Song, H. Y., Lee, J. W., Lee, K. H., & Lee, Y. J. (2011). Heart monitoring garments using textile electrodes for healthcare applications. Journal of Medical Systems, 35(2), 189-201. DOI: 10.1007/s10916-009-9356-8
  7. Son, Y. K., Kim. J. E, & Cho, I. Y., (2008). Trends on wearable computer technology and market, electronics and telecommunications research institute. Electronic Telecommunications Trend Analysis, 23(5), 1-10.
  8. Kim, S, H. (2011). Health IT technology trends. electronics and telecommunications research institute. Electronic Telecommunications Trend Analysis, 26(6), 1-10.
  9. Gi, S. O., Lee, Y. J.. Koo, H. R., Khang, S, A., Park, H. J., Kim, K. S., Lee, J. H., & Lee, J. W. (2013). An analysis on the effect of the shape features of the textile electrode on the non-contact type of sensing of cardiac activity based on the magneticinduced conductivity principle. The Transactions of the Korean Institute of Electrical Engineers, 62(6), 803-810. DOI: 10.5370/KIEE.2013.62.6.803
  10. Gi, S. O., Lee, Y. J., Koo, H. R., Khang, S. A., Kim, K. N., Kang, S. J., Lee, J. H., & Lee, J. W. (2015). Application of a textile-based inductive sensor for the vital sign monitoring. Journal of Electrical Engineering & Technology, 10(1), 364-371. DOI: 10.5370/JEET.2015.10.1.364
  11. Gi, S. O., Lee, Y. J., Koo, H. R., Lee, S. P., Lee, K, H., Kim, K. N., Kang, S. J., Lee, J. H., & Lee, J. W. (2015). The effect of electrode designs based on the anatomical heart location for the non-contact heart activity measurement. Journal of Medical Systems, 39, 191, Published online: 21 October 2015. DOI: 10.1007/s10916-015-0339-7
  12. Hoffmann, K. P., & Ruff, R. (2007). Flexible dry surfaceelectrodes for ECG long-term monitoring. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 22-26 Aug. 2007. Lyon, France. 5739-5742. DOI: 10.1109/IEMBS.2007.4353650
  13. Kang, D. H., Cho, H. K., Song, H. Y., Cho, H. S., Lee, J. H., Lee, K, H,, Koo, S. M.., Lee, Y. J., & Lee, J, W. (2008). A study on a prototype of ecg-sensing clothing based on textile electrode for lifestyle monitoring. Science of Emotion & Sensibility, 11(3), 419-426.
  14. Kang, M. Y., Park, D. H., & Kim, K. S. (2018). Present and future of smart health care, SAMJONG KPMG, Issue Monitor, No. 79.
  15. Takagahara, K., Ono, K., Oda, N., & Teshigawara, T. (2014). "hitoe"-A Wearable Sensor Developed through Cross-industrial Collaboration, NTT Technical Review, 12(9), 1-5.
  16. Koo, H. R., Lee, Y. J., Gi, S. O., Khang, S. A., Lee, J. H., Lee, J. H., Lim, M. G., Park, H. J., & Lee, J. W. (2014). The effect of textile-based inductive coil sensor positions for heart rate monitoring. Journal of Medical Systems, 38, 2, Published online: 31 Jan. 2014. DOI: 10.1007/s10916-013-0002-0
  17. Koo, H. R., Lee, Y. J., Gi, S. O., Lee, S. P., Kim, K. N., Kang, S. J., Lee, J. W., & Lee, J. H. (2015). Effect of module design for a garment-type heart activity monitoring wearable system based on non-contact type sensing. Journal of the Korean Society of Clothing and Textiles, 39(3), 369-378. DOI: https://doi.org/10.5850/JKSCT.2015.39.3.369
  18. Lee, M. K. (2017). Trends and Implications of Healthcare in the Age of the Fourth Industrial Revolution, Weekly KDB Report, 2017. 7. 24.
  19. Lee, Y. J., Lee. P. J., Yang, H. K., Lee. J. W., Kim, K. S., Park, W. S., & Kim, K. D (2011). Design of noncontact pulse measurement system using capacitive sensor. Proceedings of the KIEE Winter Annual Conference 2011, 296-98.
  20. Lymberis, A. (2004). Research and development of smart wearable health applications: The challenge ahead. Studies in Health Technology and Informatics, 108, 155-161.
  21. Noh, Y. H., & Jeong, D. U. (2010). Development of the wearable ECG measurement system for health monitoring during daily life. Journal of the Korean Sensors Society, 19(1), 3-51.
  22. OFFICE OF RESEARCH AFFAIRS/UIF, YONSEI UNIVERSITY (2009). Product Planning of Smart Clothing, Ministry of Trade, Industry and Energy, Industrial Technology Development Project Final Report.
  23. Pantelopoulos, A., & Bourbakis, N. G. (2010). A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Transaction Systems, Man, and Cybemetics, Part C(Application and Reviews), 40(1), 1-12. DOI: 10.1109/TSMCC.2009.2032660
  24. Paradiso, R., Loriga, G., & Taccinim, N. (2005). A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine, 9(3), 337-344. DOI: 10.1109/TITB.2005.854512
  25. Rotsch, C., Hanus, S., Schwabe, D., Oschatz, H., Neudeck, A., & Möhring, U. (2012). Intelligent Textiles and Trends. In Springer Handbook of Medical Technology, Part G, Berlin, Heidelberg: Springer, 1321-1336. DOI: https://doi.org/10.1007/978-3-540-74658-4_73
  26. Song, H. Y., Lee, J. H. Kang, D. H., Cho, H. K., Cho, H. S. Lee, J. W., &. Lee, Y. J. (2010). Textile electrodes of jacquard woven fabrics for biosignal measurement. Journal of the Textile Institute, 101(8), 758-770. DOI: 10.1080/00405000903442086
  27. Seoane, F., Ferreira, J., Alvarez, L., Buendia, R., Ayllón, D., Llerena, C., & Gil-Pita, R. (2013). Sensorized garments and textrode-enabled measurement instrumentation for ambulatory assessment of the autonomic nervous system response in the atrec project. Sensors, 13(7), 8997-9015. Doi: 10.3390/s130708997
  28. Steffen, M., Aleksandrowicz, A., & Leonhardt, S. (2007). Mobile Noncontact Monitoring of Heart and Lung Activity. IEEE Transactions on Biomedical Circuits and Systems, 1(4), 250-257. DOI: 10.1109/TBCAS.2008.915633
  29. Yapici, M. K., & Alkhidir, T. E. (2017). Intelligent Medical Garments with Graphene-Functionalized Smart-Cloth ECG. Sensors, 17(4), 1-12. DOI: 10.3390/s17040875