DOI QR코드

DOI QR Code

Seasonal Distributional Characteristics of Phytoplankton Adjacent to the Oyster Farming Area of Hansan-Geoje Island

한산도-거제도 동부 굴 양식장주변에서 식물플랑크톤의 계절적 분포특성

  • 임영균 (한국해양과학기술원 위해성분석연구센터) ;
  • 백승호 (한국해양과학기술원 위해성분석연구센터)
  • Received : 2018.12.04
  • Accepted : 2018.12.14
  • Published : 2018.12.31

Abstract

The aim of this study is to investigate the seasonal changes of phytoplankton communities based on the environmental changes in a dense oyster farming area (Hansan-Geoje Island) from June to December 2016. The water temperature varied from $14^{\circ}C$ to $28.8^{\circ}C$ and its salinity ranged from 29.4 to 34.2 psu. Nitrate+nitrite was kept at c.a. $3.0{\mu}M$ on the surface layer from June to July, below the concentration limit in August and early September, and then gradually increased from late September. Ammonia was high on July 20 and August 10, and its seasonal characteristics were not clear. Phosphate ranged from 0.01 to $0.7{\mu}M$ on the surface layer, and its seasonal changes were similar to those of nitrate+nitrite. Mean silicate concentrations were $10.7{\mu}M$ on the surface and $15.7{\mu}M$ in the bottom layer, and it was not acted as a limiting factor for the growth of phytoplankton. Among the phytoplankton community, Bacillariophyceae, Dinophyceae and Cryptophyceae was 61.2%, 22.5%, and 13.6%, respectively. In late June, dinoflagellate Prorocentrum donghaiense was dominant in the outer waters(St. T1), later on, Cryptomonas spp. and Chaetoceros spp. were dominant, respectively. From late September to October, diatoms Pseudo-nitzschia spp. and Chaetoceros spp. were stimulated under non-stratified condition after the typhoon. In December, A. sanguinea was found to be $1.7{\times}10^5cells\;L^{-1}$. Seasonally, relative high phytoplankton biomass may be favorable to maintain high production of filter feeder oyster in the dense oyster farming areas of Hansan and Geoje Island.

본 연구에서는 2016년 6월부터 12월까지 통영 한산도 및 거제 동부 굴 양식장 밀집해역의 환경요인의 변동에 따른 식물플랑크톤 군집변화의 계절특성을 파악하고자 하였다. 조사기간 동안 수온은 $14{\sim}28.8^{\circ}C$로, 염분은 29.4~34.2 psu의 범위로 변화하였다. 질산염+아질산염의 농도는 6~7월 동안 표층에서 $3.0{\mu}M$ 전후로, 8월과 9월초까지 제한농도 이하로, 그 후 9월말부터 점차적으로 증가하는 양상을 보였다. 암모니아는 전반적으로 낮게 나타나 계절적 특성이 뚜렷하지 않았다. 인산염은 표층에서 $0.01{\sim}0.7{\mu}M$의 범위로 보였고, 질산염+아질산염과 유사한 계절적 변화를 보였다. 규산염 평균농도는 표층에서 $10.7{\mu}M$과 저층에서 $15.7{\mu}M$로, 전 계절에 있어 식물플랑크톤의 성장에 제한인자로 작용하지 않았다. 식물플랑크톤 군집조성은 규조류, 와편모조류, 은편모조류의 비율은 각각 61.2%, 22.5%, 13.6%로 관찰되었다. 6월말, 외측해역(T1정점)을 중심으로 와편모조류 Prorocentrum donghaiense가 우점하였고, 이후 7월 Cryptomonas spp.와 규조류 Chaetoceros spp.가 상대적으로 높게 점유하였다. 태풍 이후 성층이 붕괴된 9월말에서 10월까지 규조류 Pseudonitzschia spp.와 Chaetoceros spp.가 전 정점에서 우점하였으며, 12월에는 와편모조류 A. sanguinea가 최대 $1.7{\times}10^5cells\;L^{-1}$로 적조주의보 수준으로 높게 관찰되었다. 결과적으로 거제도 한산도주변해역에서는 계절적 성층의 형성과 소멸에 따른 식물플랑크톤 군집조성의 차이가 나타났고, 환경요인의 변화는 일차생산자인 식물플랑크톤 생물량(biomass) 변동에도 영향을 미칠 수 있으며, 이는 양식굴산업의 생산에도 직결될 것으로 판단된다.

Keywords

References

  1. Agius C, V Jaccarini and DA Ritz. 1978. Growth trials of Crassostrea gigas and ostrea edulis in inshore waters of Malta (Central Mediterranean). Aquaculture 15:195-218.
  2. Bae PA and CH Han. 1998. Effects of nursery environmental factors on the growth of Pacific oyster, Crassostrea gigas. Korean J. Aquacult. 11:391-400.
  3. Baek SH, HH Shin, MC Jang, SW Kim, M Son, H Cho and YO Kim. 2012. Algicidal effects of a newly developed Thiazolidinedione derivative, TD49, on dinoflagellate Akashiwo sanguinea. Ocean Polar Res. 34:125-135.
  4. Baek SH, S Shimode and T Kikuchi. 2007. Reproductive ecology of the dominant dinoflagellate, Ceratium fusus in coastal area of Sagami Bay, Japan. J. Oceanogr. 63:35-45.
  5. Barros P, P Sobral, P Range, L Chicharo and D Matias. 2013. Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 440:200-206. https://doi.org/10.1016/j.jembe.2012.12.014
  6. Cabrini M, B Cataletto, P Ganis, I Pecchiar and SF Umani. 1995. Relationships between toxic phytoplankton and environmental factors in the Gulf of Trieste: multifactorial analysis. pp. 139-144. In Harmful Marine Algal Blooms (Lassus et al. eds.). Lavoisier, Paris.
  7. Carstensen J, R Klais and JE Cloern. 2015. Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuar. Coast. Shelf Sci. 162:98-109.
  8. Chang PH and A Isobe. 2003. A numerical study on the Changjiang diluted water in the Yellow and East China Seas. J. Geophys. Res. C108:3299.
  9. Cho YS, SJ Hong, SE Park, RH Jung, WC Lee and SM Lee. 2010. Application of ecological indicator to sustainable use of oyster culture grounds in Geoje Hansan Bay, Korea. J. Korean Soc. Mar. Envion. Saf. 16:21-29.
  10. Danovaro R, C Gambi, GM Luna and S Mirto. 2004. Sustainable impact of mussel farming in the Adriatic Sea (Mediterranean Sea): evidence from biochemical, microbial and meiofaunal indicators. Mar. Pollut. Bull. 49:325-333. https://doi.org/10.1016/j.marpolbul.2004.02.038
  11. Fan C, PM Glibert and JA Burkholder. 2003. Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures. Harmful Algae 2:282-299.
  12. Glibert PM, R Magnien, MW Lomas, JFC Alexander, E Haramoto, M Trice and TM Kana. 2001. Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: comparison of 1997, 1998, and 1999 events. Estuaries 24:875-883.
  13. Graneli E and MO Moreira. 1990. Effect of river water of different origin on the growth of marine dinoflagellate and diatoms in laboratory cultures. J. Exp. Mar. Biol. Ecol. 36:89-106.
  14. Grzebyk D and B Berland. 1996. Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae) from the Mediterranean Sea. J. Plankton Res. 18:1837-1849.
  15. Hajdu S, L Edler, I Olenina and B Witek. 2000. Spreading and establishment of the potentially toxic dinoflagellate Prorocentrum minimum in the Baltic Sea. Int. Rev. Hydrobiol. 85:557-571.
  16. Han HS and SM Cho. 2013. Study on optimal condition for oyster rack culture in terms of tidal exposure and rack height in Wando Coast, Korea. Korean J. Malacol. 29:43-48.
  17. Jeong HJ, AS Lim, K Lee, MJ Lee, KA Seong, NS Kang and JH Kim. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of redtide organisms and environmental factors. Algae 32:101-130.
  18. Jeong HJ, AS Lim, PJ Franks, KH Lee, JH Kim, NS Kang, MJ Lee, SH Jang, SY Lee and EY Yoon. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.
  19. Lee CK, TG Park, YT Park and WA Lim. 2013. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30:3-14. https://doi.org/10.1016/j.hal.2013.10.002
  20. Lee SJ, WG Jeong, SM Cho and JN Kwon. 2016. Estimation of carrying capacity by food availability for farming oysters in Goseong Bay, Korea. Korean J. Malacol. 32:83-93.
  21. Lee YS, YT Park, KY Kim, YK Choi and PY Lee. 2006. Characteristics of costal water quality after diatom blooms due to freshwater inflow. J. Korean Soc. Mar. Environ. Saf. 12:75-79.
  22. Lim DB, CH Cho and WS Kwon. 1975. On the oceanographic conditions of oyster farming area near Chungmu. Korean J. Fish. Aquat. Sci. 8:61-67.
  23. Lim YK and SH Baek. 2017. Seasonal variation of primary producer phytoplankton community in the vicinity of the oyster farming area between Tongyeong-Saryang Island. Korean J. Environ. Biol. 35:492-500.
  24. Lu D and J Goebel. 2001. Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp. Nov. from the East China Sea. Chinese J. Oceanogr. Limnol. 19:337-344.
  25. Lu D, J Goebel, Y Qi, J Zou, X Han, Y Gao and Y Li. 2005. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae 4:493-505.
  26. Lu S and IJ Hodgkiss. 2004. Harmful algal bloom causative collected from Hong Kong waters. Hydrobiologia 512:231-238.
  27. Mendez SM. 1993. Uruguayan red tide monitoring programme: preliminary results (1990-1991). pp. 287-291. In Toxic Phytoplankton Blooms in the Sea (Smayda and Shimizu eds.). Elsevier, Amsterdam.
  28. NIFS. 2011. Annual report of the sanitation survey on the aquaculture ground of shellfish in Hansan-Geoje bay. National Institute of Fisheries Science. pp. 1-8.
  29. Park BS, P Wang, JH Kim, JH Kim, CJ Gobler and MS Han. 2014. Resolving the intra-specific succession within Cochlodinium polykrikoides populations in southern Korean coastal waters via use of quantitative PCR assays. Harmful Algae 37:133-141.
  30. Park JS, HC Kim, WJ Choi, WC Lee and CK Park. 2002. Estimating the carrying capacity of a coastal bay for oyster culture-I. estimating a food supply to oysters using an eco-hydrodynamic model in Geoie-Hansan Bay. J. Fish. Aquat. Sci. 35:395-407.
  31. Pomeroy R, CF D'Elia and LC Schaffner. 2006. Limit to topdown control of phytoplankton by oysters in Chesapeake Bay. Mar. Ecol. Prog. Ser. 325:301-309.
  32. Silva ES. 1985. Ecological factors related to Prorocentrum minimum blooms in Obidos Lagoon (Portugal). pp. 251-256. In Toxic Dinoflagellates (Anderson et al. eds.). Elsevier, New York.
  33. Smayda TJ. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153.
  34. Springer JJ, JM Burkholder, HB Glasgow, PM Glibert and RE Reed. 2005. Use of a real-time remote monitoring network (RTRM) and shipborne sampling to characterize a dinoflagellate bloom in the Neuse Estuary, North Carolina, USA. Harmful Algae 4:533-551.
  35. Stonik IV. 1995. A potentially toxic dinoflagellate, Prorocentrum minimum, in Amurskii Bay of the Sea of Japan. Russ. J. Mar. Biol. 20: 314-320.
  36. Tango PJ, R Magnien, W Butler, R Lacouture, K Sellner, P Glibert, M Luckenbach, C Poukish and C Luckett. 2005. Characterization of impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay. Harmful Algae 4:525-531.
  37. Turpin DH and PJ Harrison. 1979. Limiting nutrient patchiness and its role in phytoplankton ecology. J. Exp. Mar. Biol. Ecol. 39:151-166.
  38. Watras CJ, VC Garcon, RJ Olson, SW Chisholm and DM Anderson. 1985. The effect of zooplankton grazing on estuarine blooms of the toxic dinoflagellate Gonyaulax tamarensis. J. Plankton Res. 7:891-908.
  39. Xu N, S Duan, A Li, C Zhang, Z Cai and Z Hu. 2010. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae 9:13-17.
  40. Yamasaki Y, S Nagasoe, T Matsubara, T Shikata, Y Shimasaki, Y Oshima and T Honjo. 2007. Growth inhibition and formation of morphologically abnormal cells of Akashiwo sanguinea (Hirasaka) G. Hansen et Moestrup by cell contact with Cochlodinium polykrikoides Margalef. Mar. Biol. 152:157-163.
  41. Zhou MJ, ZL Shen and RC Yu. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Cont. Shelf Res. 28:1483-1489.
  42. Zhu W, L Wan and L Zhao. 2010. Effect of nutrient level on phytoplankton community structure in different water bodies. J. Environ. Sci. 22:32-39.