DOI QR코드

DOI QR Code

Analysis of Antioxidant Content and Growth of Agastache rugosa as Affected by LED Light Qualities

LED 광질 조건에 따른 배초향 생장 및 항산화 물질 함량 분석

  • Kim, Sungjin (Department of Horticultural Sciences, Chungnam National University) ;
  • Bok, Gwonjeong (Department of Horticultural Sciences, Chungnam National University) ;
  • Park, Jongseok (Department of Horticultural Sciences, Chungnam National University)
  • 김성진 (충남대학교 농업생명과학대학 원예학과) ;
  • 복권정 (충남대학교 농업생명과학대학 원예학과) ;
  • 박종석 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2018.07.17
  • Accepted : 2018.07.27
  • Published : 2018.07.30

Abstract

The aim of this study was to evaluate the effect of light quality using either monochromatic or combined LEDs on the growth and antioxidant accumulation of Agastache rugosa cultivated under hydroponics for 4 weeks. This experiment was performed in a controlled-environment room at $22{\pm}1^{\circ}C$ and $18{\pm}1^{\circ}C$ (day and night temperatures, respectively) and 50-70% relative humidity, with a provided photosynthetic photon flux density (PPFD) of $180{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and irradiated with either monochromatic (W10 and R10) or mixed LEDs (W2B1G1, R3B1, R2B1G1, and W2B1G1) with a differing ratio of each LED's PPFD and fluorescent lighting (FL: control) with a 16/8 h photoperiod. Fresh and dry weights were highest for plants grown under the W2B1G1 treatment. A. rugosa grown with R10 had the greatest plant height but the lowest SPAD among all treatments. The concentration of rosmarinic acid in plants grown under W2B1G1 was significantly higher than that of plants grown under other treatments. Tilianin content was significantly higher in R3B1 than in the other treatments. However, whole-plant rosmarinic acid and tilianin content was the highest under the W2B1G1 condition. To cultivate A. rugosa in a plant factory, mixed-LED light conditions with W2B1G1 is considered to be more advantageous for the growth and antioxidant accumulation of A. rugosa. It is though that the total whole-plant antioxidant content is more crucial for commercial use; the present study demonstrates the potential to achieve higher content of functional materials in plants through the selection of light quality.

본 연구는 수경재배 방식으로 재배 된 배초향(Agastache rugosa)의 생장과 항산화 물질 축적에 대하여 단색 또는 복합 LEDs의 광질이 미치는 영향을 살펴 보고자 수행하였다. 본엽 4매인 배초향 묘를 수경재배 시스템에 정식하였으며, 백색(W10), 적색(R10), 혼합 LEDs (W2B1G1, R3B1, R2B1G1, W2B1G1: 각 LED의 PPFD 비율) 및 형광등(FL: 대조구)을 이용하여 $180{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 광합성광량자속밀도(PPFD)의 조건과, 16/8h 광주기, $22{\pm}1/18{\pm}1^{\circ}C$ (주/야간) 온도, $60{\pm}10%$의 상대 습도로 관리된 재배실에서 4주동안 배초향을 재배하였다. W2B1G1 광조건에서 자란 배초향의 생체중과 건물중은 모든 처리중에서 가장 큰 값을 나타내었다. R10 조건에서 재배 된 배초향은 초장이 가장 길었지만 SPAD는 모든 처리와 비교해서 가장 낮은 값을 보였다. 배초향의 건물중당 rosmarinic acid 농도는 W2B1G1 처리구에서 유의하게 높았다. 건물당 tilianin 함량은 다른 처리구들과 비교할 때, R3B1에서 유의적으로 가장 높았다. 그러나 전체 식물체에 함유 된 rosmarinic acid와 tilianin 함량은 W2B1G1 조건에서 가장 높았다. 식물공장에서 배초향을 재배하기 위해, W2B1G1으로 구성된 혼합 LED 광 조건이 배초향의 생장과 항산화 물질축적에 가장 유리한 것으로 나타났다. 본 연구는 식물 전체에 함유 된 항산화 물질의 총량이 상업적 용도로 중요하다는 것과, 광질의 최적 선택을 통해서 기능성물질의 증대가 가능하다는 것을 보여주었다.

Keywords

References

  1. Ahn, B. and C.B. Yang. 1991. Volatile flavor components of Bangah (Agastache rugosa O. Kuntze) Herb. Korean Journal of Food Science and Technology 23:582-586.
  2. Aksenova, N.P., Konstantinova, T.N., Sergeeva, L.I. Machackova, I. and Golyanovskaya, S.A. 1994. Morphogenesis of potato plants in vitro. I. Effect of light quality and hormones. Journal of Plant Growth Regulation 13:143-146. https://doi.org/10.1007/BF00196378
  3. Barros, L., Carvalho, A.M. and Ferreira, I.C. 2011. Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Research International 44:2233-2236. https://doi.org/10.1016/j.foodres.2010.10.005
  4. Bourgaud, F., Gravot, A., Milesi, S. and Gontier, E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science 161:839-851. https://doi.org/10.1016/S0168-9452(01)00490-3
  5. Butler, W.L., Hendricks, S.B. and Siegelman, H.W. 1964. Actton spectra of phytochrome in vitro. Photochemistry and Photobiology 3:521-528. https://doi.org/10.1111/j.1751-1097.1964.tb08171.x
  6. Cha, M.K., Cho, J.H. and Cho, Y.Y. 2013. Growth of leaf lettuce as affected by light quality of LED in closed-type plant factory system. Protected Horticulture and Plant Factory 22:291-297. https://doi.org/10.12791/KSBEC.2013.22.4.291
  7. Chen, J.H., and Ho, C.T. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. Journal of Agricultural and Food Chemistry 45:2374-2378. https://doi.org/10.1021/jf970055t
  8. Cuvelier, M.E., Richard, H. and Berset, C. 1996. Antioxidative activity and phenolic composition of pilot plant and commercial extracts of sage and rosemary. Journal of the American Oil Chemists Society 73:645-652. https://doi.org/10.1007/BF02518121
  9. Ellis, B.E. and Towers, G.H.N. 1970. Biogenesis of rosmarinic acid in Mentha. Biochemical Journal 118:291-297. https://doi.org/10.1042/bj1180291
  10. Folta, K.M. and Maruhnich, S.A. 2007. Green light: a signal to slow down or stop. Journal of Experimental Botany 58:3099-3111. https://doi.org/10.1093/jxb/erm130
  11. Folta, K.M., and Childers, K.S. 2008. Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience 43:1957-1964.
  12. Gerke, B.F., Ngo, A.T., Alstone, A.L., and Fisseha, K.S. 2014. The evolving price of household LED lamps: Recent trends and historical comparisons for the US market.
  13. Gertlowski, C., and Petersen, M. 1993. Influence of the carbon source on growth and rosmarinic acid production in suspension cultures of Coleus blumei. Plant Cell, Tissue and Organ Culture 34:183-190. https://doi.org/10.1007/BF00036100
  14. Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Fiore, A., Tavazza, M. and Giuliano, G. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiology 137:199-208. https://doi.org/10.1104/pp.104.051987
  15. Hakkim, F.L., Shankar, C.G. and Girija, S. 2007. Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. Journal of Agricultural and Food Chemistry 55:9109-9117. https://doi.org/10.1021/jf071509h
  16. Han, D.S., Y.C. Kim, S.E. Kim, H.S. Ju and Byun, S.J. 1987. Studies on the diterpene constituent of the root of Agastache rugosa O. Kuntze. Korean Journal of Pharmacognosy 18:99-102.
  17. Hong, J.J., Choi, J.H., Oh, S.R., Lee, H.K., Park, J.H., Lee, K.Y., Kim, J.J., Jeong, T.S. and Oh, G.T. 2001. Inhibition of cytokine?induced vascular cell adhesion molecule 1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. Federation of European Biochemical Societies Letters 495:142-147. https://doi.org/10.1016/S0014-5793(01)02379-1
  18. Johkan, M., Shoji, K., Goto, F., Hahida, S.N. and Yoshihara, T. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany 75:128-133. https://doi.org/10.1016/j.envexpbot.2011.08.010
  19. Kang, B., Grancher, N., Koyffmann, V., Lardemer, D., Burney, S. and Ahmad, M. 2008. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana. Planta 227:1091-1099. https://doi.org/10.1007/s00425-007-0683-z
  20. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience 39:1617-1622.
  21. Kim, S.J., Hahn, E.J., Heo, J.W., and Paek, K.Y., 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae 101:143-151. https://doi.org/10.1016/j.scienta.2003.10.003
  22. Kim, H.H., Wheeler, R., Sager, J., and NORIKANE, J. 2005. Photosynthesis of lettuce exposed to different short term light qualities. Environmental Control in Biology 43:113-119. https://doi.org/10.2525/ecb.43.113
  23. Kim, H.R., and Young H.Y. 2013. Effects of red, blue, white, and far-red LED source on growth responses of Wasabia japonica seedlings in plant factory. Korean Journal of Horticultural Science and Technology 31:415-422. https://doi.org/10.7235/hort.2013.13011
  24. Kim, E.Y., Park, S.A., Park, B.J., Lee, Y., and Oh, M.M. 2014. Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Horticulture, Environment, and Biotechnology 55:506-513. https://doi.org/10.1007/s13580-014-0121-7
  25. Kopsell, D.A. and Kopsell, D.E. 2008. Genetic and environmental factors affecting plant lutein/zeaxanthin. Agro. Food Industry High-Tech. 19:44-46.
  26. Kopsell, D.A., and M.G. Lefsrud. 2006. Biomass production and pigment accumulation in kale grown under different radiation cycles in a controlled environment. HortScience 41:1412-1415.
  27. Lefsrud, M.G., Kopsell, D.A., Auge, R.M., and Both, A.J. 2006. Biomass production and pigment accumulation in kale grown under increasing photoperiods. HortScience 41:603-606.
  28. Lefsrud, M.G., D.A. Kopsell, and C.E. Sams. 2008. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43:2243-2244.
  29. Lee, J.S., and Kim, Y.H. 2014. Growth and anthocyanins of lettuce grown under red or blue light-emitting diodes with distinct peak wavelength. Korean Journal of Horticultural Science and Technology 32:330-339. https://doi.org/10.7235/hort.2014.13152
  30. Lee, G.I., Kim, H.J., Kim, S.J., Lee, J.W., and Park, J.S. 2016. Increased growth by LED and accumulation of functional materials by florescence lamps in a hydroponics culture system for Angelica gigas. Protected Horticulture and Plant Factory 25:42-48. https://doi.org/10.12791/KSBEC.2016.25.1.42
  31. Li, Q.H. and H.Q. Yang. 2007. Cryptochrome signaling in plants. Photochemistry and Photobiology 83:94-101. https://doi.org/10.1562/2006-02-28-IR-826
  32. Lin, K.H., M.Y. Huang, W.D. Huang, M.H. Hsu, Z.W. Yang, and C.M. Yang. 2013. The effects of red, blue, and white light-emitting diodes on the growth development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae 150:86-91. https://doi.org/10.1016/j.scienta.2012.10.002
  33. McCree, Keith J. 1972. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agricultural Meteorology 10:443-453. https://doi.org/10.1016/0002-1571(72)90045-3
  34. McMahon, M.J., Kelly, J.W., Decoteau, D.R., Young, R.E. and Pollock, R.K. 1991. Growth of Dendranthemaxgrandiflorum (Ramat.) Kitamura under various spectral filters. Journal of the American Society for Horticultural Science 116:950-954.
  35. Meng, X., T. Xing, and X. Wang. 2004. The role of light in the regulation of anthocyanin accumulation in Gerbera hybrida. Plant Growth Regulation 44:243-250. https://doi.org/10.1007/s10725-004-4454-6
  36. Nam, K.H., Choi, J.H., Seo, Y.J., Lee, Y.M., Won, Y.S., Lee, M.R., Lee, M.N., Park, J.G., Kim, Y.M., Kim, H.C. and Lee, C.H. 2006. Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice. Experimental & Molecular Medicine. 38:445-452. https://doi.org/10.1038/emm.2006.52
  37. Oh, H.M., Kang, Y.J., Lee, Y.S., Park, M.K., Kim, S.H., Kim, H.J., Seo, H.G., Lee, J.H., and Chang, K.C. 2006. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury. Journal of Ethnopharmacology 103:229-235. https://doi.org/10.1016/j.jep.2005.08.030
  38. Park, W.T., Kim, H.H., Chae, S.C., Cho, J.W. and Park, S.U. 2014. Phenylpropanoids in Agastache foeniculum and its cultivar A. foeniculum 'Golden Jubilee'. Asian Journal of Chemistry 26:4599-4601.
  39. Rao, S.R. and G.A. Ravishankar. 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances 20:101-153. https://doi.org/10.1016/S0734-9750(02)00007-1
  40. Rajapakse, N.C. and Kelly, J.W. 1992. Regulation of chrysanthemum growth by spectral filters. Journal of the American Society for Horticultural Science 117:481-485.
  41. Son, K.H., Park, J.H., Kim, D. and Oh, M.M. 2012. Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diode. Korean Journal of Horticultural Science and Technology 30:664-672. https://doi.org/10.7235/hort.2012.12063
  42. Son, K.H., Song, M.J., and Oh, M.M. 2016. Comparison of combined light-emitting diodes and fluorescent lamps for growth and light use efficiency of red leaf lettuce. Protected Horticulture and Plant Factory 25:139-145. https://doi.org/10.12791/KSBEC.2016.25.3.139
  43. Taiz, L. and Zeiger, E. 1991. Cytokinins. Plant Physiology (ed. Taiz a. Zeiger) 452-472.
  44. Takeda, H., Tsuji, M., Miyamoto, J. and Matsumiya, T. 2002. Rosmarinic acid and caffeic acid reduce the defensive freezing behavior of mice exposed to conditioned fear stress. Psychopharmacology 164:233-235. https://doi.org/10.1007/s00213-002-1253-5
  45. Tuan, P.A., Park, W.T., Xu, H., Park, N.I., and Park, S.U. 2012. Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. Journal of Agricultural and Food Chemistry 60:5945-5951. https://doi.org/10.1021/jf300833m
  46. Verpoorte, R., van der Heijden, R., and Memelink, J. 2000. Engineering the plant cell factory for secondary metabolite production. Transgenic Research 9:323-343. https://doi.org/10.1023/A:1008966404981