DOI QR코드

DOI QR Code

A study on reactive chlorine species generation enhanced by heterojunction structures on surface of IrO2-based anodes for water treatment

IrO2 기반 수처리용 산화 전극의 표면 이종 접합 구성에 따른 활성 염소종 발생 증진 특성 연구

  • Hong, Sukhwa (Division of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Cho, Kangwoo (Division of Environmental Science and Engineering, Pohang University of Science and Technology)
  • 홍석화 (포항공과대학교 환경공학부) ;
  • 조강우 (포항공과대학교 환경공학부)
  • Received : 2018.06.22
  • Accepted : 2018.07.31
  • Published : 2018.08.15

Abstract

This study interrogated multi-layer heterojunction anodes were interrogated for potential applications to water treatment. The multi-layer anodes with outer layers of $SnO_2/Bi_2O_3$ and/or $TiO_2/Bi_2O_3$ onto $IrO_2/Ta_2O_5$ electrodes were prepared by thermal decomposition and characterized in terms of reactive chlorine species (RCS) generation in 50 mM NaCl solutions. The $IrO_2/Ta_2O_5$ layer on Ti substrate (Anode 1) primarily served as an electron shuttle. The current efficiency (CE) and energy efficiency (EE) for RCS generation were significantly enhanced by the further coating of $SnO_2/Bi_2O_3$ (Anode 2) and $TiO_2/Bi_2O_3$ (Anode 3) layers onto the Anode 1, despite moderate losses in electrical conductivity and active surface area. The CE of the Anode 3 was found to show the highest RCS generation rate, whereas the multi-junction architecture (Anode 4, sequential coating of $IrO_2/Ta_2O_5$, $SnO_2/Bi_2O_3$, and $TiO_2/Bi_2O_3$) showed marginal improvement. The microscopic observations indicated that the outer $TiO_2/Bi_2O_3$ could form a crack-free layer by an incorporation of anatase $TiO_2$ particles, potentially increasing the service life of the anode. The results of this study are expected to broaden the usage of dimensionally stable anodes in water treatment with an enhanced RCS generation and lifetime.

Keywords

References

  1. 환경부 (2017) 산업폐수발생과 처리 (2015년 말 기준)
  2. Cho, K., Hoffmann, M.R. (2015). Bi x Ti1-x O z Functionalized Heterojunction Anode with an Enhanced Reactive Chlorine Generation Efficiency in Dilute Aqueous Solutions, Chem. Mater. 27(6), 2224-2233. https://doi.org/10.1021/acs.chemmater.5b00376
  3. Comninellis, C., Vercesi, G. (1991). Characterization of DSA(R)-type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem., 21(4), 335-345. https://doi.org/10.1007/BF01020219
  4. Da Silva, L.A., Alves, V.A., Da Silva, M.A.P., Trasatti, S., Boodts, J.F.C. (1997). Oxygen evolution in acid solution on $IrO_2+TiO_2$ ceramic films. A study by impedance, voltammetry and SEM, Electrochim. Acta, 42(2), 271-281. https://doi.org/10.1016/0013-4686(96)00160-0
  5. Hansen, H.A., Man, I.C., Studt, F., Abild-Pedersen, F., Bligaard, T., Rossmeisl, J. (2010). Electrochemical chlorine evolution at rutile oxide (110) surfaces, Phys. Chem. Chem. Phys., 12(1), 283-290. https://doi.org/10.1039/B917459A
  6. Hou Y.Y., Hu, J.M., Liu L., Zhang J.Q., Cao. C.N. (2006). Effect of calcination temperature on electrocatalytic activities of $Ti/IrO_2$ electrodes in methanol aqueous solutions, Electrochim. Acta., 51(28), 6258-6267. https://doi.org/10.1016/j.electacta.2006.04.008
  7. Kim, S., Choi, S.K., Yoon, B.Y., Lim, S.K., Park, H. (2010). Effects of electrolyte on the electrocatalytic activities of $RuO_2/Ti$ and Sb-$SnO_2/Ti$ anodes for water treatment, Appl. Catal. B-Environ., 97(1), 135-141. https://doi.org/10.1016/j.apcatb.2010.03.033
  8. Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., Schroder, F., Rennau, J. (1999). Electrochemical water disinfection Part I: Hypochlorite production from very dilute chloride solutions, J. Appl. Electrochem., 29(7), 859-866. https://doi.org/10.1023/A:1003650220511
  9. Martinez-Huitle, C.A., Ferro S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev., 35(12), 1324-1340. https://doi.org/10.1039/B517632H
  10. Oller, I., Malato, S, Sanchez-Perez J.A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review, Sci. Total. Environ., 409(20), 4141-4166. https://doi.org/10.1016/j.scitotenv.2010.08.061
  11. Panizza, M., Cerisola G. (2009). Direct and mediated anodic oxidation of organic pollutants, Chem. rev., 109(12), 6541-6569. https://doi.org/10.1021/cr9001319
  12. Park, H., Bak, A., Ahn, Y.Y., Choi, J., Hoffmann M.R. (2012). Photoelectrochemical performance of multi-layered $BiO_x-TiO_2/Ti$ electrodes for degradation of phenol and production of molecular hydrogen in water, J. Hazard. Mater., 211-212, 47-54. https://doi.org/10.1016/j.jhazmat.2011.05.009

Cited by

  1. 전극의 부반응 기포발생에 따른 휘발특성과 전기화학고도산화능을 동시에 고려한 휘발성 유기화합물 처리용 최적 불용성전극 개발 vol.33, pp.1, 2018, https://doi.org/10.11001/jksww.2019.33.1.031
  2. 수처리용 Ti/IrO2/SnO2-Sb-Ni 전극의 전기화학적 특성평가 vol.29, pp.10, 2018, https://doi.org/10.5322/jesi.2020.29.10.943