DOI QR코드

DOI QR Code

Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress

  • Uddin, Md Jamal (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University) ;
  • Pak, Eun Seon (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University) ;
  • Ha, Hunjoo (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University)
  • Received : 2018.04.05
  • Accepted : 2018.07.12
  • Published : 2018.09.01

Abstract

Acute kidney injury (AKI), which is defined as a rapid decline of renal function, becomes common and recently recognized to be closely intertwined with chronic kidney diseases. Current treatment for AKI is largely supportive, and endoplasmic reticulum (ER) stress has emerged as a novel mediator of AKI. Since carbon monoxide attenuates ER stress, the objective of the present study aimed to determine the protective effect of carbon monoxide releasing molecule-2 (CORM2) on AKI associated with ER stress. Kidney injury was induced after LPS (15 mg/kg) treatment at 12 to 24 h in C57BL/6J mice. Pretreatment of CORM2 (30 mg/kg) effectively prevented LPS-induced oxidative stress and inflammation during AKI in mice. CORM2 treatment also effectively inhibited LPS-induced ER stress in AKI mice. In order to confirm effect of CO on the pathophysiological role of tubular epithelial cells in AKI, we used mProx24 cells. Pretreatment of CORM2 attenuated LPS-induced ER stress, oxidative stress, and inflammation in mProx24 cells. These data suggest that CO therapy may prevent ER stress-mediated AKI.

Keywords

References

  1. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813-818. https://doi.org/10.1001/jama.294.7.813
  2. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442-448. https://doi.org/10.1038/ki.2011.379
  3. Lewington AJ, Cerda J, Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 2013;84:457-467. https://doi.org/10.1038/ki.2013.153
  4. Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol. 2015;10:147-155. https://doi.org/10.2215/CJN.12191213
  5. Xu Y, Guo M, Jiang W, Dong H, Han Y, An XF, Zhang J. Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury. Ren Fail. 2016;38:831-837. https://doi.org/10.3109/0886022X.2016.1160724
  6. Gao X, Fu L, Xiao M, Xu C, Sun L, Zhang T, Zheng F, Mei C. The nephroprotective effect of tauroursodeoxycholic acid on ischaemia/reperfusion-induced acute kidney injury by inhibiting endoplasmic reticulum stress. Basic Clin Pharmacol Toxicol. 2012;111:14-23.
  7. Bailly-Maitre B, Fondevila C, Kaldas F, Droin N, Luciano F, Ricci JE, Croxton R, Krajewska M, Zapata JM, Kupiec-Weglinski JW, Farmer D, Reed JC. Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2006;103:2809-2814. https://doi.org/10.1073/pnas.0506854103
  8. Li X, Hassoun HT, Santora R, Rabb H. Organ crosstalk: the role of the kidney. Curr Opin Crit Care. 2009;15:481-487. https://doi.org/10.1097/MCC.0b013e328332f69e
  9. Mittwede PN, Xiang L, Lu S, Clemmer JS, Hester RL. Oxidative stress contributes to orthopedic trauma-induced acute kidney injury in obese rats. Am J Physiol Renal Physiol. 2015;308:F157-163. https://doi.org/10.1152/ajprenal.00537.2014
  10. Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S, Dong Z. Regulated cell death in AKI. J Am Soc Nephrol. 2014;25:2689-2701. https://doi.org/10.1681/ASN.2014030262
  11. Gao L, Wu WF, Dong L, Ren GL, Li HD, Yang Q, Li XF, Xu T, Li Z, Wu BM, Ma TT, Huang C, Huang Y, Zhang L, Lv X, Li J, Meng XM. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing nox-mediated oxidative stress and renal inflammation. Front Pharmacol. 2016;7:479.
  12. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415:92-96. https://doi.org/10.1038/415092a
  13. Kim S, Joe Y, Kim HJ, Kim YS, Jeong SO, Pae HO, Ryter SW, Surh YJ, Chung HT. Endoplasmic reticulum stress-induced IRE$1{\alpha}$ activation mediates cross-talk of GSK-$3{\beta}$ and XBP-1 to regulate inflammatory cytokine production. J Immunol. 2015;194:4498-4506. https://doi.org/10.4049/jimmunol.1401399
  14. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664-666. https://doi.org/10.1126/science.287.5453.664
  15. Lin H, Liu XB, Yu JJ, Hua F, Hu ZW. Antioxidant N-acetylcysteine attenuates hepatocarcinogenesis by inhibiting ROS/ER stress in TLR2 deficient mouse. PLoS One. 2013;8:e74130. https://doi.org/10.1371/journal.pone.0074130
  16. Wang Q, Wang H, Jia Y, Pan H, Ding H. Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma. Cancer Chemother Pharmacol. 2017;79:1031-1041. https://doi.org/10.1007/s00280-017-3299-4
  17. Nakahira K, Choi AM. Carbon monoxide in the treatment of sepsis. Am J Physiol Lung Cell Mol Physiol. 2015;309:L1387-1393. https://doi.org/10.1152/ajplung.00311.2015
  18. Ryter SW, Morse D, Choi AM. Carbon monoxide: to boldly go where NO has gone before. Sci STKE. 2004;2004:RE6.
  19. Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol. 1999;276:L688-694.
  20. Kim KM, Pae HO, Zheng M, Park R, Kim YM, Chung HT. Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress. Circ Res. 2007;101:919-927. https://doi.org/10.1161/CIRCRESAHA.107.154781
  21. Kim DS, Song L, Wang J, Wu H, Gou W, Cui W, Kim JS, Wang H. Carbon monoxide inhibits islet apoptosis via induction of autophagy. Antioxid Redox Signal. 2018;28:1309-1322. https://doi.org/10.1089/ars.2016.6979
  22. Wang L, Lee JY, Kwak JH, He Y, Kim SI, Choi ME. Protective effects of low-dose carbon monoxide against renal fibrosis induced by unilateral ureteral obstruction. Am J Physiol Renal Physiol. 2008;294:F508-517. https://doi.org/10.1152/ajprenal.00306.2007
  23. Shiohira S, Yoshida T, Shirota S, Tsuchiya K, Nitta K. Protective effect of carbon monoxide donor compounds in endotoxin-induced acute renal failure. Am J Nephrol. 2007;27:441-446. https://doi.org/10.1159/000105559
  24. Wang P, Huang J, Li Y, Chang R, Wu H, Lin J, Huang Z. Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. Int J Mol Sci. 2015;16:20595-20608. https://doi.org/10.3390/ijms160920595
  25. Tayem Y, Johnson TR, Mann BE, Green CJ, Motterlini R. Protection against cisplatin-induced nephrotoxicity by a carbon monoxidereleasing molecule. Am J Physiol Renal Physiol. 2006;290:F789-794. https://doi.org/10.1152/ajprenal.00363.2005
  26. Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N. Protection of transplantinduced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol. 2004;287:F979-989. https://doi.org/10.1152/ajprenal.00158.2004
  27. Vera T, Henegar JR, Drummond HA, Rimoldi JM, Stec DE. Protective effect of carbon monoxide-releasing compounds in ischemiainduced acute renal failure. J Am Soc Nephrol. 2005;16:950-958. https://doi.org/10.1681/ASN.2004090736
  28. Zhang X, Shan P, Otterbein LE, Alam J, Flavell RA, Davis RJ, Choi AM, Lee PJ. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogenactivated protein kinase pathway and involves caspase 3. J Biol Chem. 2003;278:1248-1258. https://doi.org/10.1074/jbc.M208419200
  29. Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res. 1980;29:189-201. https://doi.org/10.1016/0022-4804(80)90037-2
  30. Remick DG, Newcomb DE, Bolgos GL, Call DR. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock. 2000;13:110-116. https://doi.org/10.1097/00024382-200013020-00004
  31. Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest. 2009;119:2868-2878. https://doi.org/10.1172/JCI39421
  32. Tiwari MM, Brock RW, Megyesi JK, Kaushal GP, Mayeux PR. Disruption of renal peritubular blood flow in lipopolysaccharideinduced renal failure: role of nitric oxide and caspases. Am J Physiol Renal Physiol. 2005;289:F1324-1332. https://doi.org/10.1152/ajprenal.00124.2005
  33. Tsoyi K, Lee TY, Lee YS, Kim HJ, Seo HG, Lee JH, Chang KC. Heme-oxygenase-1 induction and carbon monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro and improve survival of mice in LPSand cecal ligation and puncture-induced sepsis model in vivo. Mol Pharmacol. 2009;76:173-182. https://doi.org/10.1124/mol.109.055137
  34. Ha H, Yu MR, Kim KH. Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radic Biol Med. 1999;26:944-950. https://doi.org/10.1016/S0891-5849(98)00276-7
  35. Park JH, Ha H. Short-term treatment of daumone improves hepatic inflammation in aged mice. Korean J Physiol Pharmacol. 2015;19:269-274. https://doi.org/10.4196/kjpp.2015.19.3.269
  36. Sohn M, Kim K, Uddin MJ, Lee G, Hwang I, Kang H, Kim H, Lee JH, Ha H. Delayed treatment with fenofibrate protects against highfat diet-induced kidney injury in mice: the possible role of AMPK autophagy. Am J Physiol Renal Physiol. 2017;312:F323-334. https://doi.org/10.1152/ajprenal.00596.2015
  37. Sancho-Martinez SM, Lopez-Novoa JM, Lopez-Hernandez FJ. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin Kidney J. 2015;8:548-559. https://doi.org/10.1093/ckj/sfv069
  38. Maeshima A, Takahashi S, Nakasatomi M, Nojima Y. Diverse cell populations involved in regeneration of renal tubular epithelium following acute kidney injury. Stem Cells Int. 2015. doi: 10.1155/2015/964849.
  39. Abe T, Yazawa K, Fujino M, Imamura R, Hatayama N, Kakuta Y, Tsutahara K, Okumi M, Ichimaru N, Kaimori JY, Isaka Y, Seki K, Takahara S, Li XK, Nonomura N. High-pressure carbon monoxide preserves rat kidney grafts from apoptosis and inflammation. Lab Invest. 2017;97:468-477. https://doi.org/10.1038/labinvest.2016.157
  40. Kim HJ, Jeong JS, Kim SR, Park SY, Chae HJ, Lee YC. Inhibition of endoplasmic reticulum stress alleviates lipopolysaccharide-induced lung inflammation through modulation of $NF-{\kappa}B/HIF-1{\alpha}$ signaling pathway. Sci Rep. 2013;3:1142. https://doi.org/10.1038/srep01142
  41. Zhang H, Zhang W, Jiao F, Li X, Zhang H, Wang L, Gong Z. The nephroprotective effect of MS-275 on lipopolysaccharide (LPS)-induced acute kidney injury by inhibiting reactive oxygen species (ROS)-oxidative stress and endoplasmic reticulum stress. Med Sci Monit. 2018;24:2620-2630. https://doi.org/10.12659/MSM.906362
  42. Kim HP, Ryter SW, Choi AM. CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol. 2006;46:411-449. https://doi.org/10.1146/annurev.pharmtox.46.120604.141053
  43. Roberts GP, Youn H, Kerby RL. CO-sensing mechanisms. Microbiol Mol Biol Rev. 2004;68:453-473, table of contents. https://doi.org/10.1128/MMBR.68.3.453-473.2004
  44. Taille C, El-Benna J, Lanone S, Boczkowski J, Motterlini R. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem. 2005;280:25350-25360. https://doi.org/10.1074/jbc.M503512200
  45. Matsumoto H, Ishikawa K, Itabe H, Maruyama Y. Carbon monoxide and bilirubin from heme oxygenase-1 suppresses reactive oxygen species generation and plasminogen activator inhibitor-1 induction. Mol Cell Biochem. 2006;291:21-28. https://doi.org/10.1007/s11010-006-9190-y
  46. Dulak J, Loboda A, Jozkowicz A. Effect of heme oxygenase-1 on vascular function and disease. Curr Opin Lipidol. 2008;19:505-512. https://doi.org/10.1097/MOL.0b013e32830d81e9
  47. Csongradi E, Juncos LA, Drummond HA, Vera T, Stec DE. Role of carbon monoxide in kidney function: is a little carbon monoxide good for the kidney? Curr Pharm Biotechnol. 2012;13:819-826. https://doi.org/10.2174/138920112800399284
  48. Srisook K, Han SS, Choi HS, Li MH, Ueda H, Kim C, Cha YN. CO from enhanced HO activity or from CORM-2 inhibits both O2-and NO production and downregulates HO-1 expression in LPSstimulated macrophages. Biochem Pharmacol. 2006;71:307-318. https://doi.org/10.1016/j.bcp.2005.10.042
  49. Agarwal A, Nick HS. Renal response to tissue injury: lessons from heme oxygenase-1 GeneAblation and expression. J Am Soc Nephrol. 2000;11:965-973.
  50. Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006;8:76-87. https://doi.org/10.1089/ars.2006.8.76
  51. Liu M, Grigoryev DN, Crow MT, Haas M, Yamamoto M, Reddy SP, Rabb H. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int. 2009;76:277-285. https://doi.org/10.1038/ki.2009.157
  52. Kim TW, Kim YJ, Kim HT, Park SR, Lee MY, Park YD, Lee CH, Jung JY. NQO1 deficiency leads enhanced autophagy in cisplatininduced acute kidney injury through the AMPK/TSC2/mTOR signaling pathway. Antioxid Redox Signal. 2016;24:867-883. https://doi.org/10.1089/ars.2015.6386
  53. Lee JW, Kwon JH, Lim MS, Lee HJ, Kim SS, Lim SY, Chun W. 3,4,5-Trihydroxycinnamic acid increases heme-oxygenase-1 (HO-1) and decreases macrophage infiltration in LPS-induced septic kidney. Mol Cell Biochem. 2014;397:109-116. https://doi.org/10.1007/s11010-014-2177-1
  54. Rushworth SA, MacEwan DJ, O'Connell MA. Lipopolysaccharideinduced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol. 2008;181:6730-6737. https://doi.org/10.4049/jimmunol.181.10.6730
  55. Rushworth SA, Chen XL, Mackman N, Ogborne RM, O'Connell MA. Lipopolysaccharide-induced heme oxygenase-1 expression in human monocytic cells is mediated via Nrf2 and protein kinase C. J Immunol. 2005;175:4408-4415. https://doi.org/10.4049/jimmunol.175.7.4408
  56. Agarwal A, Balla J, Alam J, Croatt AJ, Nath KA. Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int. 1995;48:1298-1307. https://doi.org/10.1038/ki.1995.414
  57. Lever JM, Boddu R, George JF, Agarwal A. Heme oxygenase-1 in kidney health and disease. Antioxid Redox Signal. 2016;25:165-183. https://doi.org/10.1089/ars.2016.6659

Cited by

  1. Fyn Kinase: A Potential Therapeutic Target in Acute Kidney Injury vol.28, pp.3, 2018, https://doi.org/10.4062/biomolther.2019.214
  2. Inhibition of Src Family Kinases Ameliorates LPS-Induced Acute Kidney Injury and Mitochondrial Dysfunction in Mice vol.21, pp.21, 2018, https://doi.org/10.3390/ijms21218246
  3. CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9947772
  4. Carbon Monoxide in Renal Physiology, Pathogenesis and Treatment of Renal Disease vol.27, pp.None, 2018, https://doi.org/10.2174/1381612827666210706161207
  5. Pharmacotherapy against Oxidative Stress in Chronic Kidney Disease: Promising Small Molecule Natural Products Targeting Nrf2-HO-1 Signaling vol.10, pp.2, 2021, https://doi.org/10.3390/antiox10020258
  6. Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging vol.22, pp.15, 2018, https://doi.org/10.3390/ijms22158258
  7. Protective Effects of Black Cumin (Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22169078
  8. Prospects for Protective Potential of Moringa oleifera against Kidney Diseases vol.10, pp.12, 2018, https://doi.org/10.3390/plants10122818
  9. Liposomal Artificial Red Blood Cell-Based Carbon Monoxide Donor Is a Potent Renoprotectant against Cisplatin-Induced Acute Kidney Injury vol.14, pp.1, 2018, https://doi.org/10.3390/pharmaceutics14010057