DOI QR코드

DOI QR Code

Comparison of Counter Current Extraction Process of Pr & Nd Separation using Cyanex 572 and PC88A

Cyanex 572와 PC88A를 사용하여 Pr 및 Nd 분리 시 향류추출 공정 비교

  • Lee, Joo-eun (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • So, Hong-Il (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Cho, Yeon-Chul (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Ahn, Jae-Woo (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Kim, Hong-in (Covergence Research Center for Development of Mineral Resources(DMR), Korea Institute of Geoscience and mineral Resources) ;
  • Lee, Jin-young (Covergence Research Center for Development of Mineral Resources(DMR), Korea Institute of Geoscience and mineral Resources)
  • 이주은 (대진대학교 신소재공학과) ;
  • 소홍일 (대진대학교 신소재공학과) ;
  • 조연철 (대진대학교 신소재공학과) ;
  • 안재우 (대진대학교 신소재공학과) ;
  • 김홍인 (한국지질자원연구원 DMR융합연구단) ;
  • 이진영 (한국지질자원연구원 DMR융합연구단)
  • Received : 2018.06.07
  • Accepted : 2018.06.25
  • Published : 2018.08.05

Abstract

This study designed a counter current extraction process for comparing the separation efficiencies that are obtained using Cyanex 572 and PC88A for the elements in a Pr and Nd mixed solution. This process involves multiple extraction and scrubbing processes using a mixer settler. The process parameters are calculated using an equation proposed by Xu Guangxian. The separation factor for the extraction and scrubbing process was 0.09 and 0.08 higher when using Cyanex 572 compared to the experimental values obtained using PC88A. The optimized extraction factors such as the stage numbers, feeding solution flow rate, organic phase flow rate, and scrubbing solution flow rate were calculated using the optimal extraction ratio equation. In order to derive optimum extraction conditions, the target purity and recovery ratio of Nd was set to 99.9% and 99% respectively. When using Cyanex 572 for the counter current extraction process, the total number of extraction and scrubbing stages decreased by 11 in comparison with PC88A. A comparison between the extraction, scrubbing stages, and other parameters indicate that Cyanex 572 is preferable over PC88A from the viewpoint of economic efficiency.

Keywords

Acknowledgement

Supported by : 과학기술정보통신부

References

  1. T. G. Goonan, USGS, Scientific Investigations Report 2011-5094 (2011).
  2. Y. D. Kim and C. S. Ko, Econ. Environ. Geol. 43, 505 (2010).
  3. S. J. Lee, J. H. Kwon, H. R. Cha, K. M. Kim, H. W. Kwon, J. G. Lee, and D. Y. Lee, Met. Mater. Int. 22, 340 (2016). https://doi.org/10.1007/s12540-016-5460-8
  4. D. H. Kim and B. S. Oh, Korea and World Politics 26, 135 (2010). https://doi.org/10.17331/kwp.2010.26.2.005
  5. W. J. Jung, D. H. Kim, Y. J. Lee, Y. S. Oh, and W. S. Chung, Met. Mater. Int. 23, 385 (2017). https://doi.org/10.1007/s12540-017-6188-9
  6. H. S. Yoo, Separation Technology Trend of Rare Earth Element, KISTI, Daejeon, Korea (2003).
  7. G. S. Lee, J. Y. Lee, S. D. Kim, J. S. Kim, and M. S. Lee, J. Korean Inst. Resour. Recycl. 13, 39 (2004).
  8. N. K. Ahn, B. Y. Im, J. E. Lee, J. R. Park, C. G. Lee, and K. S. Park, J. Korean Inst. Resour. Recycl. 26, 26 (2017).
  9. R. Banda, H. S. Jeon, and M. S. Lee, Hydrometallurgy 121-124, 74 (2012). https://doi.org/10.1016/j.hydromet.2012.04.003
  10. Y. C. Cho, J. E. Lee, H. I. So, J. W. Ahn, H. I. Kim, and J. Y. Lee, Korean J. Met. Mater. 56, 146 (2018).
  11. Y. C. Cho, M. S. Kang, J. W. Ahn, and J. Y. Lee, J. Korean Inst. Resour. Recycl. 25, 50 (2016).
  12. Y. C. Cho, J. E. Lee, H. I. So, J. W. Ahn, H. I. Kim, and J. Y. Lee, J. Korean Inst. Resour. Recycl. 26, 79 (2017).
  13. M. S. Lee, J. G. Ahn, and J. W. Ahn, Hydrometallurgy 70, 23 (2003). https://doi.org/10.1016/S0304-386X(03)00045-8
  14. M. S. Lee and S. M. Shin, J. Korean Inst. Resour. Recycl. 19, 29 (2010).
  15. X. Guangxian, and X. Jimel, New frontiers in Rare Earth Science and Applications, Elsevier (1985).
  16. X. Guangxian, The Rare Earth, Metallurgical Industry Press of China, Beiging (1995).
  17. M. K. Jha, A. Kumari, R. Panda, J. R. Kumar, K. K. Yoo, and J. Y. Lee, Hydrometallurgy 161, 304 (2016).
  18. J. Y. Lee, H. S. Yoon, C. J. Kim, K. S. Park, H. C. Eom, and J. S. Kim, Proceedings of the Korean Inst. of Resources Recycling Conference, 26, pp. 298-303, Changwon, Korea (2005).
  19. L. Wenli, G. D. Ascenzo, R. Curini, Y. Chunhua, W. Jianfang, J. J. Tao, and W. Minwen, Anal. Chim. Acta. 417, 111 (2000). https://doi.org/10.1016/S0003-2670(00)00749-2
  20. H. Yang, F. P. Xu, R. X. Lu, and Y. Q. Ding, Chinese J. Chem. Eng. 23, 192 (2015). https://doi.org/10.1016/j.cjche.2014.09.046
  21. S. H. Zhong, Chin. J. Appl. Chem. 18, 821 (2001).
  22. A. Kremser, Natl. Pet. News 43, 22 (1930).
  23. L. Alders, Liquid-Liquid Extraction, Elsevier, Amsterdam, Netherlands (1959).
  24. F. E. Kosinski, and H. Bostian, J. Inorg. Nucl. Chem. 31, 3623 (1969). https://doi.org/10.1016/0022-1902(69)80350-7
  25. F. Li, Q. He, T. Wang, H. Zhou, S. Zhang, and X. Sun, J. Rare Earth. 35, 1133 (2017). https://doi.org/10.1016/j.jre.2017.06.002
  26. R. Banda, H. S. Jeon, and M. S. Lee, J. Ind. Eng. Chem. 21, 436 (2015). https://doi.org/10.1016/j.jiec.2014.03.002