DOI QR코드

DOI QR Code

Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges

  • Received : 2018.03.07
  • Accepted : 2018.05.10
  • Published : 2018.08.01

Abstract

In the past decades, gas separation using polymeric membranes has received considerable attention and become one of the fastest growing research areas. However, existing polymeric membranes may not be able to keep up with the increasing separation needs for challenging gas mixtures such as $N_2/CH_4$ and light olefin/paraffin pairs on industrial scale due to their so-called permeability-selectivity bound. On the other hand, scaling-up issues poise huge challenges for highly permeable and highly selective inorganic membranes. Mixed-matrix membranes, composite membranes, provide an evolutionary solution to debottleneck the permeability-selectivity and scale-up issues currently faced by polymeric and inorganic membranes, respectively. Inorganic fillers in mixed-matrix membranes improve gas permeability and/or selectivity, outperforming polymeric membranes. Combined with relatively economical and simple scaling-up compared to inorganic membranes, mixed-matrix membranes could potentially be a next-generation membrane concept for gas separation applications. This review provides a brief summary on the recent progress in both flat sheet and hollow fiber mixed-matrix membranes with an emphasis on those made over the last five years. A separate section is dedicated to discussing engineering challenges transitioning from laboratory-scale to large-scale synthesis of mixed-matrix membranes. Finally, future prospects and perspectives in mixed-matrix membranes research are briefly outlined.

Keywords

Acknowledgement

Supported by : National Science Foundation

References

  1. D. S. Sholl and R. P. Lively, Nature, 532, 435 (2016). https://doi.org/10.1038/532435a
  2. A.R. Smith and J. Klosek, Fuel Process. Technol., 70, 115 (2001). https://doi.org/10.1016/S0378-3820(01)00131-X
  3. R. Faiz and K. Li, Desalination, 287, 82 (2012). https://doi.org/10.1016/j.desal.2011.11.019
  4. N.W. Ockwig and T. M. Nenoff, Chem. Rev., 107, 4078 (2007). https://doi.org/10.1021/cr0501792
  5. A. B. Hinchliffe and K. E. Porter, Chem. Eng. Res. Des., 78, 255 (2000). https://doi.org/10.1205/026387600527121
  6. N.R. Council, Separation technologies for the industries of the future, National Academies Press (1999).
  7. R. B. Eldridge, Ind. Eng. Chem. Res., 32, 2208 (1993). https://doi.org/10.1021/ie00022a002
  8. U. S.D. o. E.O. o.E. Efficiency, R. Energy, U. S.D. o. E.O. o. Scientific and T. Information, Materials for separation technologies: Energy and emission reduction opportunities, United States, Department of Energy. Office of Energy Efficiency and Renewable Energy (2005).
  9. W. Ho and K. Sirkar, Membrane handbook, Springer Science & Business Media (2012).
  10. M.T. Ravanchi, T. Kaghazchi and A. Kargari, Desalination, 235, 199 (2009). https://doi.org/10.1016/j.desal.2007.10.042
  11. G.W. Meindersma and M. Kuczynski, J. Membr. Sci., 113, 285 (1996). https://doi.org/10.1016/0376-7388(95)00127-1
  12. M. Galizia, W.S. Chi, Z.P. Smith, T.C. Merkel, R.W. Baker and B.D. Freeman, Macromolecules, 50, 7809 (2017). https://doi.org/10.1021/acs.macromol.7b01718
  13. M.A. Carreon, S. Li, J. L. Falconer and R.D. Noble, J. Am. Chem. Soc., 130, 5412 (2008). https://doi.org/10.1021/ja801294f
  14. M.Y. Jeon, D. Kim, P. Kumar, P. S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee and K. Narasimharao, Nature, 543, 690 (2017). https://doi.org/10.1038/nature21421
  15. W. J. Koros and R. Mahajan, J. Membr. Sci., 175, 181 (2000). https://doi.org/10.1016/S0376-7388(00)00418-X
  16. B. Nandi, R. Uppaluri and M. Purkait, Appl. Clay Sci., 42, 102 (2008). https://doi.org/10.1016/j.clay.2007.12.001
  17. S. Hopkins, High-performance palladium based membrane for hydrogen separation and purification, Pall Corporation (2012).
  18. P. S. Goh, A. F. Ismail, S. M. Sanip, B.C. Ng and M. Aziz, Sep. Purif. Technol., 81, 243 (2011). https://doi.org/10.1016/j.seppur.2011.07.042
  19. D. Bastani, N. Esmaeili and M. Asadollahi, J. Ind. Eng. Chem., 19, 375 (2013). https://doi.org/10.1016/j.jiec.2012.09.019
  20. G. Dong, H. Li and V. Chen, J. Mater. Chem. A, 1, 4610 (2013). https://doi.org/10.1039/c3ta00927k
  21. N. Jusoh, Y. F. Yeong, T. L. Chew, K. K. Lau and A. M. Shariff, Sep. Purif. Rev., 45, 321 (2016). https://doi.org/10.1080/15422119.2016.1146149
  22. T.-S. Chung, L.Y. Jiang, Y. Li and S. Kulprathipanja, Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  23. J. Dechnik, J. Gascon, C. Doonan, C. Janiak and C. J. Sumby, Angew. Chem. Int. Ed., 56, 9292 (2017). https://doi.org/10.1002/anie.201701109
  24. H. B.T. Jeazet, C. Staudt and C. Janiak, Dalton Trans., 41, 14003 (2012). https://doi.org/10.1039/c2dt31550e
  25. B.D. Freeman, Macromolecules, 32, 375 (1999). https://doi.org/10.1021/ma9814548
  26. B. Ladewig and M.N. Z. Al-Shaeli, Fundamentals of membrane bioreactors, Springer (2017).
  27. R.W. Baker, Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  28. P. Bernardo, E. Drioli and G. Golemme, Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032
  29. L. Zhang, I.-S. Park, K. Shqau, W.W. Ho and H. Verweij, JOM, 61, 61 (2009).
  30. N. Hilal, A.F. Ismail and C. Wright, Membrane fabrication, CRC Press (2015).
  31. A. F. Ismail, T. Matsuura and K. C. Khulbe, Gas separation membranes: Polymeric and inorganic, Springer (2015).
  32. H. Bum Park, E. M.V. Hoek and V.V. Tarabara, Gas separation membranes, Encyclopedia of membrane science and technology, John Wiley & Sons, Inc. (2013).
  33. R.W. Baker, Membrane technology and applications, John Wiley & Sons, Ltd. (2004).
  34. C.A. Scholes, G.W. Stevens and S.E. Kentish, Fuel, 96, 15 (2012). https://doi.org/10.1016/j.fuel.2011.12.074
  35. W. J. Koros and C. Zhang, Nat. Mater., 16, 289 (2017). https://doi.org/10.1038/nmat4805
  36. S. Sridhar, B. Smitha and T. Aminabhavi, Sep. Purif. Rev., 36, 113 (2007). https://doi.org/10.1080/15422110601165967
  37. J. Schultz and K.-V. Peinemann, J. Membr. Sci., 110, 37 (1996). https://doi.org/10.1016/0376-7388(95)00214-6
  38. K. Ghosal and B.D. Freeman, Polym. Adv. Technol., 5, 673 (1994). https://doi.org/10.1002/pat.1994.220051102
  39. Y. Hirayama, T. Yoshinaga, Y. Kusuki, K. Ninomiya, T. Sakakibara and T. Tamari, J. Membr. Sci., 111, 169 (1996). https://doi.org/10.1016/0376-7388(95)00172-7
  40. T. Kim, W. Koros, G. Husk and K. O'brien, J. Membr. Sci., 37, 45 (1988). https://doi.org/10.1016/S0376-7388(00)85068-1
  41. A.M. Hillock and W. J. Koros, Macromolecules, 40, 583 (2007). https://doi.org/10.1021/ma062180o
  42. W. Qiu, L. Xu, C.-C. Chen, D.R. Paul and W. J. Koros, Polymer, 54, 6226 (2013). https://doi.org/10.1016/j.polymer.2013.09.007
  43. C. Cao, T.-S. Chung, Y. Liu, R. Wang and K. Pramoda, J. Membr. Sci., 216, 257 (2003). https://doi.org/10.1016/S0376-7388(03)00080-2
  44. H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland and I. Wright, J. Environ. Sci., 20, 14 (2008). https://doi.org/10.1016/S1001-0742(08)60002-9
  45. A.A. Olajire, Energy, 35, 2610 (2010). https://doi.org/10.1016/j.energy.2010.02.030
  46. C. E. Powell and G.G. Qiao, J. Membr. Sci., 279, 1 (2006). https://doi.org/10.1016/j.memsci.2005.12.062
  47. S. L. Liu, L. Shao, M. L. Chua, C. H. Lau, H. Wang and S. Quan, Prog. Polym. Sci., 38, 1089 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.002
  48. K. Vanherck, G. Koeckelberghs and I. F. Vankelecom, Prog. Polym. Sci., 38, 874 (2013). https://doi.org/10.1016/j.progpolymsci.2012.11.001
  49. W. Qiu, C.-C. Chen, L. Xu, L. Cui, D.R. Paul and W. J. Koros, Macromolecules, 44, 6046 (2011). https://doi.org/10.1021/ma201033j
  50. A.M. Kratochvil and W. J. Koros, Macromolecules, 41, 7920 (2008). https://doi.org/10.1021/ma801586f
  51. I.C. Omole, S. J. Miller and W. J. Koros, Macromolecules, 41, 6367 (2008). https://doi.org/10.1021/ma800813w
  52. L.M. Robeson, J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  53. L.M. Robeson, J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  54. R. Sehgal and C. J. Brinker, US Patent, 5,772,735 (1998).
  55. S. Kluiters, Energy Center of the Netherlands, Petten, The Netherlands (2004).
  56. A. F. Ismail and L. David, J. Membr. Sci., 193, 1 (2001). https://doi.org/10.1016/S0376-7388(01)00510-5
  57. J. Caro, Chem. Soc. Rev., 45, 3468 (2016). https://doi.org/10.1039/C5CS00597C
  58. A. Tavolaro and E. Drioli, Adv. Mater., 11, 975 (1999). https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<975::AID-ADMA975>3.0.CO;2-0
  59. Y. Lin and M. C. Duke, Curr. Opin. Chem. Eng., 2, 209 (2013). https://doi.org/10.1016/j.coche.2013.03.002
  60. J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastian, C. Casado and J. Coronas, Chem. Mater., 24, 2829 (2012). https://doi.org/10.1021/cm301435j
  61. S. Yang, Z. Cao, A. Arvanitis, X. Sun, Z. Xu and J. Dong, J. Membr. Sci., 505, 194 (2016). https://doi.org/10.1016/j.memsci.2016.01.043
  62. T. Tomita, K. Nakayama and H. Sakai, Micropor. Mesopor. Mater., 68, 71 (2004). https://doi.org/10.1016/j.micromeso.2003.11.016
  63. S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, K. Yajima and S. Yoshida, Ind. Eng. Chem. Res., 46, 6989 (2007). https://doi.org/10.1021/ie061682n
  64. J.C. White, P. K. Dutta, K. Shqau and H. Verweij, Langmuir, 26, 10287 (2010). https://doi.org/10.1021/la100463j
  65. K. Kusakabe, T. Kuroda, A. Murata and S. Morooka, Ind. Eng. Chem. Res., 36, 649 (1997). https://doi.org/10.1021/ie960519x
  66. K. Kusakabe, S. Yoneshige, A. Murata and S. Morooka, J. Membr. Sci., 116, 39 (1996). https://doi.org/10.1016/0376-7388(96)00010-5
  67. T. Lee, J. Choi and M. Tsapatsis, J. Membr. Sci., 436, 79 (2013). https://doi.org/10.1016/j.memsci.2013.02.028
  68. M.B. Hagg, J.A. Lie and A. Lindbrathen, Ann. N. Y. Acad. Sci., 984, 329 (2003). https://doi.org/10.1111/j.1749-6632.2003.tb06010.x
  69. D.Q. Vu, W. J. Koros and S. J. Miller, Ind. Eng. Chem. Res., 41, 367 (2002). https://doi.org/10.1021/ie010119w
  70. M. Kiyono, P. J. Williams and W. J. Koros, J. Membr. Sci., 359, 2 (2010). https://doi.org/10.1016/j.memsci.2009.10.019
  71. X. Ning and W. J. Koros, Carbon, 66, 511 (2014). https://doi.org/10.1016/j.carbon.2013.09.028
  72. Y.K. Kim, J. M. Lee, H.B. Park and Y. M. Lee, J. Membr. Sci., 235, 139 (2004). https://doi.org/10.1016/j.memsci.2004.02.004
  73. Y.K. Kim, H.B. Park and Y. M. Lee, J. Membr. Sci., 255, 265 (2005). https://doi.org/10.1016/j.memsci.2005.02.002
  74. H.-H. Tseng and A. K. Itta, J. Membr. Sci., 389, 223 (2012). https://doi.org/10.1016/j.memsci.2011.10.031
  75. X. Ma, Y. Lin, X. Wei and J. Kniep, AIChE J., 62, 491 (2016). https://doi.org/10.1002/aic.15005
  76. J.-i. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, S. Morooka and S.-H. Suh, Ind. Eng. Chem. Res., 35, 4176 (1996). https://doi.org/10.1021/ie960264n
  77. X. Ma, B. K. Lin, X. Wei, J. Kniep and Y. Lin, Ind. Eng. Chem. Res., 52, 4297 (2013). https://doi.org/10.1021/ie303188c
  78. S. Adhikari and S. Fernando, Ind. Eng. Chem. Res., 45, 875 (2006). https://doi.org/10.1021/ie050644l
  79. J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 38, 1477 (2009). https://doi.org/10.1039/b802426j
  80. H. Furukawa, K. E. Cordova, M. O'Keeffe and O.M. Yaghi, Science, 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
  81. K. S. Park, Z. Ni, A. P. Cote, J.Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe and O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A., 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
  82. B. Wang, A. P. Cote, H. Furukawa, M. O'Keeffe and O. M. Yaghi, Nature, 453, 207 (2008). https://doi.org/10.1038/nature06900
  83. A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'keeffe and O. M. Yaghi, Acc. Chem. Res., 43, 58 (2010). https://doi.org/10.1021/ar900116g
  84. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'keeffe and O. M. Yaghi, Science, 319, 939 (2008). https://doi.org/10.1126/science.1152516
  85. Y. Li, F. Liang, H. Bux, W. Yang and J. Caro, J. Membr. Sci., 354, 48 (2010). https://doi.org/10.1016/j.memsci.2010.02.074
  86. Y. Pan and Z. Lai, ChemComm, 47, 10275 (2011).
  87. A. Huang, H. Bux, F. Steinbach and J. Caro, Angew. Chem., 122, 5078 (2010). https://doi.org/10.1002/ange.201001919
  88. Y. Liu, E. Hu, E.A. Khan and Z. Lai, J. Membr. Sci., 353, 36 (2010). https://doi.org/10.1016/j.memsci.2010.02.023
  89. A. Huang, W. Dou and J. r. Caro, J. Am. Chem. Soc., 132, 15562 (2010). https://doi.org/10.1021/ja108774v
  90. M. J. Lee, H.T. Kwon and H.-K. Jeong, J. Membr. Sci., 529, 105 (2017). https://doi.org/10.1016/j.memsci.2016.12.068
  91. C. Colling and G. Huff, US Patent, 10/183793 (2004).
  92. J. Choi, H.-K. Jeong, M.A. Snyder, J. A. Stoeger, R. I. Masel and M. Tsapatsis, Science, 325, 590 (2009). https://doi.org/10.1126/science.1176095
  93. G. Xomeritakis, Z. Lai and M. Tsapatsis, Ind. Eng. Chem. Res., 40, 544 (2001). https://doi.org/10.1021/ie000613k
  94. R. Gemmer, Membrane technology workshop summary report, Washington, DC (2012).
  95. D.Q. Vu, W. J. Koros and S. J. Miller, J. Membr. Sci., 211, 311 (2003). https://doi.org/10.1016/S0376-7388(02)00429-5
  96. A. F. Ismail, P. S. Goh, S. M. Sanip and M. Aziz, Sep. Purif. Technol., 70, 12 (2009). https://doi.org/10.1016/j.seppur.2009.09.002
  97. W. J. Koros, J. Membr. Sci. Technol., 26, 1 (2006).
  98. Z. Wang, D. Wang, S. Zhang, L. Hu and J. Jin, Adv. Mater., 28, 3399 (2016). https://doi.org/10.1002/adma.201504982
  99. R. Mahajan and W. J. Koros, Ind. Eng. Chem. Res., 39, 2692 (2000). https://doi.org/10.1021/ie990799r
  100. S. Keskin and D. S. Sholl, Energy Environ. Sci., 3, 343 (2010). https://doi.org/10.1039/b923980b
  101. T. Merkel, B. Freeman, R. Spontak, Z. He, I. Pinnau, P. Meakin and A. Hill, Science, 296, 519 (2002). https://doi.org/10.1126/science.1069580
  102. N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, R. S. Murali and T. Matsuura, RSC Adv., 5, 30206 (2015). https://doi.org/10.1039/C5RA00567A
  103. D. Paul and D. Kemp, J. Polym. Sci.: Polym. Symposia, 41, 79 (1973).
  104. J. Wijmans and R. Baker, J. Membr. Sci., 107, 1 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  105. J.D. Seader and E. J. Henley, Separation process principles, John Wiley (2005).
  106. W. Koros, G. Fleming, S. Jordan, T. Kim and H. Hoehn, Prog. Polym. Sci., 13, 339 (1988). https://doi.org/10.1016/0079-6700(88)90002-0
  107. A. Singh and W. Koros, Ind. Eng. Chem. Res., 35, 1231 (1996). https://doi.org/10.1021/ie950559l
  108. S. Hashemifard, A. Ismail and T. Matsuura, J. Membr. Sci., 347, 53 (2010). https://doi.org/10.1016/j.memsci.2009.10.005
  109. J. C. Maxwell, Treatise on electricity and magnetism, Oxford Univ. Press (1873).
  110. R. Mahajan and W. J. Koros, Polym. Eng. Sci., 42, 1420 (2002). https://doi.org/10.1002/pen.11041
  111. R. Mahajan and W. J. Koros, Polym. Eng. Sci., 42, 1432 (2002). https://doi.org/10.1002/pen.11042
  112. R. Pal, J. Colloid Interface Sci., 317, 191 (2008). https://doi.org/10.1016/j.jcis.2007.09.032
  113. V.D. Bruggeman, Ann. Phys., 416, 636 (1935). https://doi.org/10.1002/andp.19354160705
  114. B. Shimekit, H. Mukhtar and T. Murugesan, J. Membr. Sci., 373, 152 (2011). https://doi.org/10.1016/j.memsci.2011.02.038
  115. T. Lewis and L. Nielsen, J. Appl. Polym. Sci., 14, 1449 (1970). https://doi.org/10.1002/app.1970.070140604
  116. L. E. Nielsen, J. Appl. Polym. Sci., 17, 3819 (1973). https://doi.org/10.1002/app.1973.070171224
  117. R. Pal, J. Reinf. Plast. Compos., 26, 643 (2007). https://doi.org/10.1177/0731684407075569
  118. B. Shimekit and H. Mukhtar, Gas permeation models in mixed matrix membranes, 2011 National Postgraduate Conference, 1 (2011).
  119. J. Felske, Int. J. Heat Mass Transfer, 47, 3453 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.013
  120. H. Vinh-Thang and S. Kaliaguine, Chem. Rev., 113, 4980 (2013). https://doi.org/10.1021/cr3003888
  121. B. Freeman and Y. Yampolskii, Membrane gas separation, John Wiley & Sons (2011).
  122. M. F. A. Wahab, A. F. Ismail and S. J. Shilton, Sep. Purif. Technol., 86, 41 (2012). https://doi.org/10.1016/j.seppur.2011.10.018
  123. S. Kulprathipanja, R.W. Neuzil and N. N. Li, US Patent, 4,740,219 (1988).
  124. E.V. Perez, C. Karunaweera, I.H. Musselman, K. J. Balkus and J. P. Ferraris, Processes, 4, 32 (2016). https://doi.org/10.3390/pr4030032
  125. G. Dong, H. Li and V. Chen, J. Membr. Sci., 353, 17 (2010). https://doi.org/10.1016/j.memsci.2010.02.012
  126. N. Alaslai, B. Ghanem, F. Alghunaimi, E. Litwiller and I. Pinnau, J. Membr. Sci., 505, 100 (2016). https://doi.org/10.1016/j.memsci.2015.12.053
  127. H. Wang, L. Huang, B.A. Holmberg and Y. Yan, ChemComm, 1708 (2002).
  128. S. Li, J. L. Falconer and R.D. Noble, Adv. Mater., 18, 2601 (2006). https://doi.org/10.1002/adma.200601147
  129. R. Surya Murali, A.F. Ismail, M.A. Rahman and S. Sridhar, Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  130. M. Junaidi, C. Leo, A. Ahmad, S. Kamal and T. Chew, Fuel Process. Technol., 118, 125 (2014). https://doi.org/10.1016/j.fuproc.2013.08.009
  131. H. Gong, S. S. Lee and T.-H. Bae, Micropor. Mesopor. Mater., 237, 82 (2017). https://doi.org/10.1016/j.micromeso.2016.09.017
  132. I. Tirouni, M. Sadeghi and M. Pakizeh, Sep. Purif. Technol., 141, 394 (2015). https://doi.org/10.1016/j.seppur.2014.12.012
  133. J. Ahmad and M.-B. Hagg, J. Membr. Sci., 427, 73 (2013). https://doi.org/10.1016/j.memsci.2012.09.036
  134. J. Ahmad and M.-B. Hagg, Sep. Purif. Technol., 115, 190 (2013). https://doi.org/10.1016/j.seppur.2013.04.049
  135. M. Rezakazemi, K. Shahidi and T. Mohammadi, Int. J. Hydrog. Energy, 37, 14576 (2012). https://doi.org/10.1016/j.ijhydene.2012.06.104
  136. D. Zhao, J. Ren, H. Li, K. Hua and M. Deng, J. Energy Chem., 23, 227 (2014). https://doi.org/10.1016/S2095-4956(14)60140-6
  137. H. Rabiee, S. M. Alsadat, M. Soltanieh, S. A. Mousavi and A. Ghadimi, J. Ind. Eng. Chem., 27, 223 (2015). https://doi.org/10.1016/j.jiec.2014.12.039
  138. U. Cakal, L. Yilmaz and H. Kalipcilar, J. Membr. Sci., 417, 45 (2012).
  139. M. Peydayesh, S. Asarehpour, T. Mohammadi and O. Bakhtiari, Chem. Eng. Res. Des., 91, 1335 (2013). https://doi.org/10.1016/j.cherd.2013.01.022
  140. M. Loloei, M. Omidkhah, A. Moghadassi and A. E. Amooghin, Int. J. Greenhouse Gas Cont., 39, 225 (2015). https://doi.org/10.1016/j.ijggc.2015.04.016
  141. F. Dorosti, M. Omidkhah and R. Abedini, J. Nat. Gas Sci. Eng., 25, 88 (2015). https://doi.org/10.1016/j.jngse.2015.04.033
  142. N. Jusoh, Y. F. Yeong, K. K. Lau and A. M. Shariff, J. Membr. Sci., 525, 175 (2017). https://doi.org/10.1016/j.memsci.2016.10.044
  143. H. Sanaeepur, A. Kargari, B. Nasernejad, A. Ebadi Amooghin and M. Omidkhah, J. Taiwan Inst. Chem. Eng., 60, 403 (2016). https://doi.org/10.1016/j.jtice.2015.10.042
  144. X.Y. Chen, O.G. Nik, D. Rodrigue and S. Kaliaguine, Polymer, 53, 3269 (2012). https://doi.org/10.1016/j.polymer.2012.03.017
  145. K. Zarshenas, A. Raisi and A. Aroujalian, J. Membr. Sci., 510, 270 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
  146. G. Ferey, Chem. Soc. Rev., 37, 191 (2008). https://doi.org/10.1039/B618320B
  147. J. J. Perry Iv, J.A. Perman and M. J. Zaworotko, Chem. Soc. Rev., 38, 1400 (2009). https://doi.org/10.1039/b807086p
  148. S.T. Meek, J. A. Greathouse and M.D. Allendorf, Adv. Mater., 23, 249 (2011). https://doi.org/10.1002/adma.201002854
  149. H. Yehia, T. Pisklak, J. Ferraris, K. Balkus and I. Musselman, Abstracts of Papers of the American Chemical Society, 227, U351 (2004).
  150. C. Zhang, R.P. Lively, K. Zhang, J.R. Johnson, O. Karvan and W. J. Koros, J. Phys. Chem. Lett., 3, 2130 (2012). https://doi.org/10.1021/jz300855a
  151. K. Li, D. H. Olson, J. Seidel, T. J. Emge, H. Gong, H. Zeng and J. Li, J. Am. Chem. Soc., 131, 10368 (2009). https://doi.org/10.1021/ja9039983
  152. K. Leng, Y. Sun, X. Li, S. Sun and W. Xu, Cryst. Growth Des., 16, 1168 (2016). https://doi.org/10.1021/acs.cgd.5b01696
  153. G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble and I. Margiolaki, Science, 309, 2040 (2005). https://doi.org/10.1126/science.1116275
  154. H.T. Kwon, H.-K. Jeong, A. S. Lee, H. S. An and J. S. Lee, J. Am. Chem. Soc., 137, 12304 (2015). https://doi.org/10.1021/jacs.5b06730
  155. P. Krokidas, M. Castier, S. Moncho, D.N. Sredojevic, E.N. Brothers, H.T. Kwon, H.-K. Jeong, J. S. Lee and I. G. Economou, J. Phys. Chem. C, 120, 8116 (2016). https://doi.org/10.1021/acs.jpcc.6b00305
  156. H. An, S. Park, H.T. Kwon, H.-K. Jeong and J. S. Lee, J. Membr. Sci., 526, 367 (2017). https://doi.org/10.1016/j.memsci.2016.12.053
  157. H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim and W. Zhou, J. Am. Chem. Soc., 135, 10525 (2013). https://doi.org/10.1021/ja404514r
  158. G. E. Cmarik, M. Kim, S. M. Cohen and K. S. Walton, Langmuir, 28, 15606 (2012). https://doi.org/10.1021/la3035352
  159. J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li and W. Jin, J. Membr. Sci., 513, 155 (2016). https://doi.org/10.1016/j.memsci.2016.04.045
  160. B. Yuan, D. Ma, X. Wang, Z. Li, Y. Li, H. Liu and D. He, Chem- Comm, 48, 1135 (2012). https://doi.org/10.1039/C2CC16923A
  161. A.L. Khan, C. Klaysom, A. Gahlaut, A.U. Khan and I.F. Vankelecom, J. Membr. Sci., 447, 73 (2013). https://doi.org/10.1016/j.memsci.2013.07.011
  162. S. Biswas, D. E. Vanpoucke, T. Verstraelen, M. Vandichel, S. Couck, K. Leus, Y.-Y. Liu, M. Waroquier, V. Van Speybroeck and J. F. Denayer, J. Phys. Chem. C, 117, 22784 (2013). https://doi.org/10.1021/jp406835n
  163. M. Waqas Anjum, B. Bueken, D. De Vos and I.F. J. Vankelecom, J. Membr. Sci., 502, 21 (2016). https://doi.org/10.1016/j.memsci.2015.12.022
  164. A. Knebel, S. Friebe, N. C. Bigall, M. Benzaqui, C. Serre and J. r. Caro, ACS Appl. Mater. Interfaces, 8, 7536 (2016). https://doi.org/10.1021/acsami.5b12541
  165. S. Park, W.R. Kang, H.T. Kwon, S. Kim, M. Seo, J. Bang, S. H. Lee, H.K. Jeong and J. S. Lee, J. Membr. Sci., 486, 29 (2015). https://doi.org/10.1016/j.memsci.2015.03.030
  166. H. Li, L. Tuo, K. Yang, H.-K. Jeong, Y. Dai, G. He and W. Zhao, J. Membr. Sci., 511, 130 (2016). https://doi.org/10.1016/j.memsci.2016.03.050
  167. W. S. Chi, S. Hwang, S.-J. Lee, S. Park, Y.-S. Bae, D.Y. Ryu, J. H. Kim and J. Kim, J. Membr. Sci., 495, 479 (2015). https://doi.org/10.1016/j.memsci.2015.08.016
  168. J. Sanchez-Lainez, B. Zornoza, S. Friebe, J. Caro, S. Cao, A. Sabetghadam, B. Seoane, J. Gascon, F. Kapteijn and C. Le Guillouzer, J. Membr. Sci., 515, 45 (2016). https://doi.org/10.1016/j.memsci.2016.05.039
  169. A. Jomekian, R.M. Behbahani, T. Mohammadi and A. Kargari, J. Nat. Gas Sci. Eng., 31, 562 (2016). https://doi.org/10.1016/j.jngse.2016.03.067
  170. N. A. H.M. Nordin, S.M. Racha, T. Matsuura, N. Misdan, N. A.A. Sani, A. F. Ismail and A. Mustafa, RSC Adv., 5, 43110 (2015). https://doi.org/10.1039/C5RA02230D
  171. N. Jusoh, Y.F. Yeong, K.K. Lau and A.M. Shariff, J. Clean. Prod., 149, 80 (2017). https://doi.org/10.1016/j.jclepro.2017.02.069
  172. S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani and D. Quemener, J. Membr. Sci., 492, 21 (2015). https://doi.org/10.1016/j.memsci.2015.05.015
  173. C. Zhang, Y. Dai, J.R. Johnson, O. Karvan and W. J. Koros, J. Membr. Sci., 389, 34 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
  174. M. Fang, C. Wu, Z. Yang, T. Wang, Y. Xia and J. Li, J. Membr. Sci., 474, 103 (2015). https://doi.org/10.1016/j.memsci.2014.09.040
  175. A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo and J.C. Jansen, J. Membr. Sci., 427, 48 (2013). https://doi.org/10.1016/j.memsci.2012.09.035
  176. M. Askari and T.-S. Chung, J. Membr. Sci., 444, 173 (2013). https://doi.org/10.1016/j.memsci.2013.05.016
  177. H.R. Amedi and M. Aghajani, Micropor. Mesopor. Mater., 247, 124 (2017). https://doi.org/10.1016/j.micromeso.2017.04.001
  178. S. Hwang, W. S. Chi, S. J. Lee, S. H. Im, J. H. Kim and J. Kim, J. Membr. Sci., 480, 11 (2015). https://doi.org/10.1016/j.memsci.2015.01.038
  179. H. S. Kunjattu, V. Ashok, A. Bhaskar, K. Pandare, R. Banerjee and U.K. Kharul, J. Membr. Sci., 549, 38 (2018). https://doi.org/10.1016/j.memsci.2017.11.069
  180. S.N. Wijenayake, N. P. Panapitiya, S. H. Versteeg, C. N. Nguyen, S. Goel, K. J. Balkus Jr., I. H. Musselman and J. P. Ferraris, Ind. Eng. Chem. Res., 52, 6991 (2013). https://doi.org/10.1021/ie400149e
  181. L. Diestel, N. Wang, B. Schwiedland, F. Steinbach, U. Giese and J. Caro, J. Membr. Sci., 492, 181 (2015). https://doi.org/10.1016/j.memsci.2015.04.069
  182. J. Sanchez-Lainez, B. Zornoza, A. Mayoral, A. Berenguer-Murcia, D. Cazorla-Amoros, C. Tellez and J. Coronas, J. Mater. Chem. A, 3, 6549 (2015). https://doi.org/10.1039/C4TA06820C
  183. M. S. Boroglu and A. B. Yumru, Sep. Purif. Technol., 173, 269 (2017). https://doi.org/10.1016/j.seppur.2016.09.037
  184. X. Wu, W. Liu, H. Wu, X. Zong, L. Yang, Y. Wu, Y. Ren, C. Shi, S. Wang and Z. Jiang, J. Membr. Sci., 548, 309 (2018). https://doi.org/10.1016/j.memsci.2017.11.038
  185. J. Yuan, H. Zhu, J. Sun, Y. Mao, G. Liu and W. Jin, ACS Appl. Mater. Interfaces, 9, 38575 (2017). https://doi.org/10.1021/acsami.7b12507
  186. E.V. Perez, G. J. Kalaw, J.P. Ferraris, K. J. Balkus and I.H. Musselman, J. Membr. Sci., 530, 201 (2017). https://doi.org/10.1016/j.memsci.2017.02.003
  187. T. Rodenas, M. van Dalen, E. Garcia-Perez, P. Serra-Crespo, B. Zornoza, F. Kapteijn and J. Gascon, Adv. Funct. Mater., 24, 249 (2014). https://doi.org/10.1002/adfm.201203462
  188. Q. Xin, J. Ouyang, T. Liu, Z. Li, Z. Li, Y. Liu, S. Wang, H. Wu, Z. Jiang and X. Cao, ACS Appl. Mater. Interfaces, 7, 1065 (2015). https://doi.org/10.1021/am504742q
  189. Q. Xin, T. Liu, Z. Li, S. Wang, Y. Li, Z. Li, J. Ouyang, Z. Jiang and H. Wu, J. Membr. Sci., 488, 67 (2015). https://doi.org/10.1016/j.memsci.2015.03.060
  190. H.B. Tanh Jeazet, S. Sorribas, J. M. Roman-Marin, B. Zornoza, C. Tellez, J. Coronas and C. Janiak, Eur. J. Inorg. Chem., 2016, 4363 (2016). https://doi.org/10.1002/ejic.201600190
  191. T. Rodenas, M. van Dalen, P. Serra-Crespo, F. Kapteijn and J. Gascon, Micropor. Mesopor. Mater., 192, 35 (2014). https://doi.org/10.1016/j.micromeso.2013.08.049
  192. X. Guo, H. Huang, Y. Ban, Q. Yang, Y. Xiao, Y. Li, W. Yang and C. Zhong, J. Membr. Sci., 478, 130 (2015). https://doi.org/10.1016/j.memsci.2015.01.007
  193. M.Z. Ahmad, M. Navarro, M. Lhotka, B. Zornoza, C. Tellez, V. Fila and J. Coronas, Sep. Purif. Technol., 192, 465 (2018). https://doi.org/10.1016/j.seppur.2017.10.039
  194. M.W. Anjum, F. Vermoortele, A.L. Khan, B. Bueken, D.E. De Vos and I. F. Vankelecom, ACS Appl. Mater. Interfaces, 7, 25193 (2015). https://doi.org/10.1021/acsami.5b08964
  195. S. J. Smith, B. P. Ladewig, A. J. Hill, C. H. Lau and M.R. Hill, Sci. Rep., 5 (2015).
  196. T.-H. Bae and J.R. Long, Energy Environ. Sci., 6, 3565 (2013). https://doi.org/10.1039/c3ee42394h
  197. N. Tien-Binh, H. Vinh-Thang, X.Y. Chen, D. Rodrigue and S. Kaliaguine, J. Membr. Sci., 520, 941 (2016). https://doi.org/10.1016/j.memsci.2016.08.045
  198. J.E. Bachman, Z.P. Smith, T. Li, T. Xu and J.R. Long, Nat. Mater., 15, 845 (2016). https://doi.org/10.1038/nmat4621
  199. S. Saufi and A. Ismail, Carbon, 42, 241 (2004). https://doi.org/10.1016/j.carbon.2003.10.022
  200. H. Suda and K. Haraya, J. Phys. Chem. B, 101, 3988 (1997). https://doi.org/10.1021/jp963997u
  201. R. Nasir, H. Mukhtar, Z. Man, M.S. Shaharun and M.Z.A. Bakar, RSC Adv., 5, 60814 (2015). https://doi.org/10.1039/C5RA09015F
  202. R. Nasir, H. Mukhtar, Z. Man, B.K. Dutta, M.S. Shaharun and M. Z. A. Bakar, J. Membr. Sci., 483, 84 (2015). https://doi.org/10.1016/j.memsci.2015.02.041
  203. L.Y. Ng, A.W. Mohammad, C.P. Leo and N. Hilal, Desalination, 308, 15 (2013). https://doi.org/10.1016/j.desal.2010.11.033
  204. L. Xu, C. Zhang, M. Rungta, W. Qiu, J. Liu and W. J. Koros, J. Membr. Sci., 459, 223 (2014). https://doi.org/10.1016/j.memsci.2014.02.023
  205. A. Fernandez-Barquin, C. Casado-Coterillo, M. Etxeberria-Benavides, J. Zuniga and A. Irabien, Chem. Eng. Technol., 40, 997 (2017). https://doi.org/10.1002/ceat.201600580
  206. J. Hu, H. Cai, H. Ren, Y. Wei, Z. Xu, H. Liu and Y. Hu, Ind. Eng. Chem. Res., 49, 12605 (2010). https://doi.org/10.1021/ie1014958
  207. C. Zhang, K. Zhang, L. Xu, Y. Labreche, B. Kraftschik and W. J. Koros, AIChE J., 60, 2625 (2014). https://doi.org/10.1002/aic.14496
  208. H. Zhu, X. Jie and Y. Cao, J. Chem., 2017 (2017).
  209. H. Zhu, X. Jie, L. Wang, G. Kang, D. Liu and Y. Cao, RSC Adv., 6, 69124 (2016). https://doi.org/10.1039/C6RA14823A
  210. P.D. Sutrisna, J. Hou, H. Li, Y. Zhang and V. Chen, J. Membr. Sci., 524, 266 (2017). https://doi.org/10.1016/j.memsci.2016.11.048
  211. Y. Dai, J. Johnson, O. Karvan, D. S. Sholl and W. Koros, J. Membr. Sci., 401, 76 (2012).
  212. A. I. Skoulidas, D.M. Ackerman, J.K. Johnson and D. S. Sholl, Phys. Rev. Lett., 89, 185901 (2002). https://doi.org/10.1103/PhysRevLett.89.185901
  213. L. Zhang, B. Zhao, X. Wang, Y. Liang, H. Qiu, G. Zheng and J. Yang, Carbon, 66, 11 (2014). https://doi.org/10.1016/j.carbon.2013.08.007
  214. K. Zahri, K. Wong, P. Goh and A. Ismail, RSC Adv., 6, 89130 (2016). https://doi.org/10.1039/C6RA16820E
  215. A. Zulhairun, M. Subramaniam, A. Samavati, M. Ramli, M. Krishparao, P. Goh and A. Ismail, Sep. Purif. Technol., 180, 13 (2017). https://doi.org/10.1016/j.seppur.2017.02.039
  216. H. Dzinun, M.H.D. Othman, A. Ismail, M.H. Puteh, M. A. Rahman and J. Jaafar, J. Membr. Sci., 479, 123 (2015). https://doi.org/10.1016/j.memsci.2014.12.052
  217. T. Yang, G. M. Shi and T. S. Chung, Adv. Energy Mater., 2, 1358 (2012). https://doi.org/10.1002/aenm.201200200
  218. A. Zulhairun, Z. Fachrurrazi, M.N. Izwanne and A. Ismail, Sep. Purif. Technol., 146, 85 (2015). https://doi.org/10.1016/j.seppur.2015.03.033
  219. A. Zulhairun, B. Ng, A. Ismail, R.S. Murali and M. Abdullah, Sep. Purif. Technol., 137, 1 (2014). https://doi.org/10.1016/j.seppur.2014.09.014
  220. A.D. Ghomshani, A. Ghaee, Z. Mansourpour, M. Esmaili and B. Sadatnia, Polym. Plast. Technol. Eng., 55, 1155 (2016). https://doi.org/10.1080/03602559.2015.1132460
  221. P.S. Goh, B. Ng, A.F. Ismail, M. Aziz and Y. Hayashi, J. Colloid Interface Sci., 386, 80 (2012). https://doi.org/10.1016/j.jcis.2012.07.033
  222. E. P. Favvas, S. F. Nitodas, A.A. Stefopoulos, S.K. Papageorgiou, K. L. Stefanopoulos and A.C. Mitropoulos, Sep. Purif. Technol., 122, 262 (2014). https://doi.org/10.1016/j.seppur.2013.11.015
  223. S. Loeb and S. Sourirajan, Sea water demineralization by means of an osmotic membrane, ACS Publications (1962).
  224. D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul and B.D. Freeman, Polymer, 54, 4729 (2013). https://doi.org/10.1016/j.polymer.2013.05.075
  225. R.W. Baker and B.T. Low, Macromolecules, 47, 6999 (2014). https://doi.org/10.1021/ma501488s
  226. M. A. Aroon, A. F. Ismail, T. Matsuura and M. M. Montazer- Rahmati, Sep. Purif. Technol., 75, 229 (2010). https://doi.org/10.1016/j.seppur.2010.08.023
  227. Y. Li, T.-S. Chung, Z. Huang and S. Kulprathipanja, J. Membr. Sci., 277, 28 (2006). https://doi.org/10.1016/j.memsci.2005.10.008
  228. S.A. McKelvey, D.T. Clausi and W. J. Koros, J. Membr. Sci., 124, 223 (1997). https://doi.org/10.1016/S0376-7388(96)00249-9
  229. D.W. Wallace, C. Staudt-Bickel and W. J. Koros, J. Membr. Sci., 278, 92 (2006). https://doi.org/10.1016/j.memsci.2005.11.001
  230. S. Husain and W. J. Koros, J. Membr. Sci., 288, 195 (2007). https://doi.org/10.1016/j.memsci.2006.11.016
  231. E.V. Perez, K. J. Balkus, J. P. Ferraris and I. H. Musselman, J. Membr. Sci., 328, 165 (2009). https://doi.org/10.1016/j.memsci.2008.12.006
  232. T. S. Chung, S. K. Teoh and X. Hu, J. Membr. Sci., 133, 161 (1997). https://doi.org/10.1016/S0376-7388(97)00101-4
  233. J. M. S. Henis and M. K. Tripodi, US Patent, 4,230,463 (1980).
  234. L.Y. Jiang, T. S. Chung and S. Kulprathipanja, J. Membr. Sci., 276, 113 (2006). https://doi.org/10.1016/j.memsci.2005.09.041
  235. Y. Li, W. B. Krantz and T. S. Chung, AIChE J., 53, 2470 (2007). https://doi.org/10.1002/aic.11239
  236. T. Yang, Y. Xiao and T.-S. Chung, Energy Environ. Sci., 4, 4171 (2011). https://doi.org/10.1039/c1ee01324f
  237. L. Ge, W. Zhou, V. Rudolph and Z. Zhu, J. Mater. Chem. A, 1, 6350 (2013). https://doi.org/10.1039/c3ta11131h
  238. V. Nafisi and M.-B. Hagg, J. Membr. Sci., 459, 244 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  239. B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn and J. Gascon, Chem. Soc. Rev., 44, 2421 (2015). https://doi.org/10.1039/C4CS00437J
  240. L.Y. Jiang, T. S. Chung, C. Cao, Z. Huang and S. Kulprathipanja, J. Membr. Sci., 252, 89 (2005). https://doi.org/10.1016/j.memsci.2004.12.004
  241. Y. Xiao, K.Y. Wang, T.-S. Chung and J. Tan, Chem. Eng. Sci., 61, 6228 (2006). https://doi.org/10.1016/j.ces.2006.05.040
  242. A. F. Ismail, T.D. Kusworo and A. Mustafa, J. Membr. Sci., 319, 306 (2008). https://doi.org/10.1016/j.memsci.2008.03.067
  243. S. Basu, A. Cano-Odena and I. F. Vankelecom, J. Membr. Sci., 362, 478 (2010). https://doi.org/10.1016/j.memsci.2010.07.005
  244. D. F. Li, T.-S. Chung, R. Wang and Y. Liu, J. Membr. Sci., 198, 211 (2002). https://doi.org/10.1016/S0376-7388(01)00658-5
  245. D. Li, T.-S. Chung and R. Wang, J. Membr. Sci., 243, 155 (2004). https://doi.org/10.1016/j.memsci.2004.06.014
  246. C. Ma and W. J. Koros, Ind. Eng. Chem. Res., 52, 10495 (2013). https://doi.org/10.1021/ie303531r
  247. T. T. Moore and W. J. Koros, J. Appl. Polym. Sci., 104, 4053 (2007). https://doi.org/10.1002/app.25653
  248. H. Vinh-Thang and S. Kaliaguine, J. Membr. Sci., 452, 271 (2014). https://doi.org/10.1016/j.memsci.2013.10.020
  249. E. A. Grulke, Polymer process engineering, Prentice Hall (1994).
  250. P. Puri, Gas Sep. Purif., 4, 29 (1990). https://doi.org/10.1016/0950-4214(90)80024-F
  251. C. Zhang and W. J. Koros, J. Phys. Chem. Lett., 6, 3841 (2015). https://doi.org/10.1021/acs.jpclett.5b01602
  252. R. Mallada and M. Menendez, Inorganic membranes: Synthesis, characterization and applications, Elsevier (2008).
  253. S. S. Hosseini, N. Peng and T. S. Chung, J. Membr. Sci., 349, 156 (2010). https://doi.org/10.1016/j.memsci.2009.11.043
  254. N. Widjojo, T. S. Chung and W.B. Krantz, J. Membr. Sci., 294, 132 (2007). https://doi.org/10.1016/j.memsci.2007.02.026
  255. Y. Li, C. Cao, T.-S. Chung and K. P. Pramoda, J. Membr. Sci., 245, 53 (2004). https://doi.org/10.1016/j.memsci.2004.08.002
  256. H.-K. Jeong, W. Krych, H. Ramanan, S. Nair, E. Marand and M. Tsapatsis, Chem. Mater., 16, 3838 (2004). https://doi.org/10.1021/cm049154u
  257. Z. Kang, Y. Peng, Y. Qian, D. Yuan, M. A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo and D. Zhao, Chem. Mater., 28, 1277 (2016). https://doi.org/10.1021/acs.chemmater.5b02902
  258. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. L. I. Xamena and J. Gascon, Nat. Mater., 14, 48 (2015). https://doi.org/10.1038/nmat4113
  259. Z. Kang, Y. Peng, Z. Hu, Y. Qian, C. Chi, L.Y. Yeo, L. Tee and D. Zhao, J. Mater. Chem. A, 3, 20801 (2015). https://doi.org/10.1039/C5TA03739E
  260. X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo and H. Wu, ACS Appl. Mater. Interfaces, 7, 5528 (2015). https://doi.org/10.1021/acsami.5b00106
  261. J. Shen, G. Liu, K. Huang, W. Jin, K.R. Lee and N. Xu, Angew. Chem., 127, 588 (2015). https://doi.org/10.1002/ange.201409563
  262. X. Li, L. Ma, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang and B. Wang, J. Membr. Sci., 479, 1 (2015). https://doi.org/10.1016/j.memsci.2015.01.014
  263. G. Liu, W. Jin and N. Xu, Angew. Chem. Int. Ed., 55, 13384 (2016). https://doi.org/10.1002/anie.201600438
  264. T. Li, Y. Pan, K.-V. Peinemann and Z. Lai, J. Membr. Sci., 425, 235 (2013).
  265. C. Rubio, B. Zornoza, P. Gorgojo, C. Tellez and J. Coronas, Curr. Org. Chem., 18, 2351 (2014). https://doi.org/10.2174/1385272819666140806201132

Cited by

  1. On the Efficient Separation of Gas Mixtures with the Mixed-Linker Zeolitic-Imidazolate Framework-7-8 vol.10, pp.46, 2018, https://doi.org/10.1021/acsami.8b12605
  2. Cellulose meets reticular chemistry: interactions between cellulosic substrates and metal-organic frameworks vol.26, pp.1, 2018, https://doi.org/10.1007/s10570-018-2203-7
  3. High Selective Mixed Membranes Based on Mesoporous MCM-41 and MCM-41-NH2 Particles in a Polysulfone Matrix vol.7, pp.None, 2019, https://doi.org/10.3389/fchem.2019.00332
  4. In situ formation of zeolitic-imidazolate framework thin films and composites using modified polymer substrates vol.7, pp.16, 2018, https://doi.org/10.1039/c9ta00837c
  5. Preparation and CO2 breakthrough adsorption of MIL-101(Cr)-D composites vol.21, pp.5, 2019, https://doi.org/10.1007/s11051-019-4526-1
  6. Highly Propylene-Selective Mixed-Matrix Membranes by in Situ Metal-Organic Framework Formation Using a Polymer-Modification Strategy vol.11, pp.29, 2018, https://doi.org/10.1021/acsami.9b07106
  7. High Polymer Mass Densities at the Mouths of Carbon Nanotubes (CNTs) Control the Diffusion of Small Molecules through CNT-Based Polymer Nanocomposite Membranes vol.123, pp.31, 2018, https://doi.org/10.1021/acs.jpcb.9b05375
  8. Synthesis of Ultrathin Zeolitic Imidazolate Framework ZIF-8 Membranes on Polymer Hollow Fibers Using a Polymer Modification Strategy for Propylene/Propane Separation vol.58, pp.32, 2018, https://doi.org/10.1021/acs.iecr.9b02969
  9. Surface Area Determination of Porous Materials Using the Brunauer-Emmett-Teller (BET) Method: Limitations and Improvements vol.123, pp.33, 2018, https://doi.org/10.1021/acs.jpcc.9b02116
  10. Development of metal organic framework filled PDMS/PI composite membranes for biobutanol recovery vol.36, pp.9, 2018, https://doi.org/10.1007/s11814-019-0327-6
  11. P (VDF‐co‐CTFE)‐g‐P2VP amphiphilic graft copolymers: Synthesis, structure, and permeation properties vol.30, pp.11, 2019, https://doi.org/10.1002/pat.4700
  12. Various Techniques for Preparation of Thin‐Film Composite Mixed‐Matrix Membranes for CO2 Separation vol.42, pp.12, 2018, https://doi.org/10.1002/ceat.201800520
  13. Effect of functional group ratio in PEBAX copolymer on propylene/propane separation for facilitated olefin transport membranes vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-47996-7
  14. Metal Organic Framework — Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions vol.8, pp.None, 2018, https://doi.org/10.3389/fchem.2020.00534
  15. Correlation between Functional Group and Formation of Nanoparticles in PEBAX/Ag Salt/Al Salt Complexes for Olefin Separation vol.12, pp.3, 2018, https://doi.org/10.3390/polym12030667
  16. Defining New Limits in Gas Separations Using Modified ZIF Systems vol.12, pp.18, 2018, https://doi.org/10.1021/acsami.0c02886
  17. A Study of the Reinforcement Effect of MWCNTs onto Polyimide Flat Sheet Membranes vol.12, pp.6, 2018, https://doi.org/10.3390/polym12061381
  18. Polyimide/ZIF-7 mixed-matrix membranes: understanding the in situ confined formation of the ZIF-7 phases inside a polymer and their effects on gas separations vol.8, pp.22, 2018, https://doi.org/10.1039/d0ta02761h
  19. Long-Term Stable 1-butyl-3-methylimidazolium Hexafluorophosphate/Ag Metal Composite Membranes for Facilitated Olefin Transport vol.10, pp.8, 2020, https://doi.org/10.3390/membranes10080191
  20. Carbon Quantum Dot-Enabled Tuning of the Microphase Structures of Poly(ether-b-amide) Membrane for CO2 Separation vol.59, pp.33, 2018, https://doi.org/10.1021/acs.iecr.0c03432
  21. Molecularly engineered switchable photo-responsive membrane in gas separation for environmental protection vol.25, pp.4, 2018, https://doi.org/10.4491/eer.2019.090
  22. Metal-organic framework ‐BASED MIXED‐MATRIX membranes for gas separation: An overview vol.58, pp.18, 2018, https://doi.org/10.1002/pol.20200122
  23. Hydrocarbon separations by glassy polymer membranes vol.58, pp.18, 2018, https://doi.org/10.1002/pol.20200128
  24. Gas Permeation Model of Mixed-Matrix Membranes with Embedded Impermeable Cuboid Nanoparticles vol.10, pp.12, 2020, https://doi.org/10.3390/membranes10120422
  25. Development of αFe2O3-TiO2/PPOdm Mixed Matrix Membrane for CO2/CH4 Separation vol.287, pp.None, 2021, https://doi.org/10.1051/e3sconf/202128702013
  26. Preparation and high CO2/CH4 selectivity of ZSM-5/Ethyl cellulose mixed matrix membranes vol.8, pp.2, 2018, https://doi.org/10.1088/2053-1591/abe321
  27. Exploring the Potential Application of Matrimid® and ZIFs-Based Membranes for Hydrogen Recovery: A Review vol.13, pp.8, 2021, https://doi.org/10.3390/polym13081292
  28. Mixed matrix membranes for hydrocarbons separation and recovery: a critical review vol.37, pp.3, 2018, https://doi.org/10.1515/revce-2018-0091
  29. Review: Mixed-Matrix Membranes with CNT for CO2 Separation Processes vol.11, pp.6, 2018, https://doi.org/10.3390/membranes11060457
  30. Facile development of microstructure-engineered, ligand-chelated SiO2-ZrO2 composite membranes for molecular separations vol.6, pp.6, 2018, https://doi.org/10.1039/d1me00011j
  31. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review vol.98, pp.None, 2021, https://doi.org/10.1016/j.jiec.2021.03.030
  32. Recent advances in simulating gas permeation through MOF membranes vol.2, pp.16, 2021, https://doi.org/10.1039/d1ma00026h
  33. Membranes for separation of CO2/CH4 at harsh conditions vol.98, pp.None, 2022, https://doi.org/10.1016/j.jngse.2021.104388
  34. On the Order and Orientation in Liquid Crystalline Polymer Membranes for Gas Separation vol.33, pp.21, 2018, https://doi.org/10.1021/acs.chemmater.1c02526