DOI QR코드

DOI QR Code

Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma

  • Choi, Youngwoo (Department of Allergy and Clinical Immunology, Ajou University School of Medicine) ;
  • Pham, Duy Le (Department of Allergy and Clinical Immunology, Ajou University School of Medicine) ;
  • Lee, Dong-Hyun (Department of Allergy and Clinical Immunology, Ajou University School of Medicine) ;
  • Lee, So-Hee (Department of Allergy and Clinical Immunology, Ajou University School of Medicine) ;
  • Kim, Seung-Hyun (Clinical Trial Center, Ajou University Medical Center) ;
  • Park, Hae-Sim (Department of Allergy and Clinical Immunology, Ajou University School of Medicine)
  • Received : 2018.03.21
  • Accepted : 2018.05.28
  • Published : 2018.08.31

Abstract

Eosinophil extracellular traps (EETs), a complex of DNA fibers and cytotoxic granule proteins, are implicated in the development of asthma; however, the pathophysiological function of EETs in immune responses has not been fully determined. The present study investigated the characteristics of EETs from patients with non-severe asthma (NSA, n = 20) and severe eosinophilic asthma (SEA, n = 20) and evaluated EET function. The percentage of EET-forming peripheral blood eosinophils stimulated with IL-5 and LPS was significantly higher in patients with SEA than in those with NSA (P = 0.009). This percentage negatively correlated with baseline $FEV_1$ (r = -0.350, P = 0.027) and positively correlated with serum eosinophil-derived neurotoxin levels in asthmatic subjects (r = 0.437, P = 0.018). In addition, EET formation was markedly associated with reactive oxygen species production (r = 0.750, P < 0.001). These EETs exhibited an autocrine function to induce eosinophil degranulation, which led to granule protein production. Airway epithelial cells stimulated with EETs exhibited increased epithelial detachment and permeability and pro-inflammatory cytokine release. However, EETs were not significantly associated with mast cell activation. The present study suggests that peripheral blood eosinophils from patients with SEA may be more activated to produce EETs than those from patients with NSA, which further induces inflammation in asthmatic airways. Therefore, regulation of EET formation and function may be a novel therapeutic approach for asthma management.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Lambrecht, B. N. & Hammad, H. The immunology of asthma. Nat. Immunol. 16, 45-56 (2015).
  2. Busse, W. W., Banks-Schlegel, S. & Wenzel, S. E. Pathophysiology of severe asthma. J. Allergy Clin. Immunol. 106, 1033-1042 (2000). https://doi.org/10.1067/mai.2000.111307
  3. Fajt, M. L. & Wenzel, S. E. Development of new therapies for severe asthma. Allergy Asthma Immunol. Res. 9, 3-14 (2017). https://doi.org/10.4168/aair.2017.9.1.3
  4. Macedo, P. et al. Inflammatory biomarkers in airways of patients with severe asthma compared with non-severe asthma. Clin. Exp. Allergy 39, 1668-1676 (2009). https://doi.org/10.1111/j.1365-2222.2009.03319.x
  5. Bousquet, J. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033-1039 (1990). https://doi.org/10.1056/NEJM199010113231505
  6. Schleich, F. N. et al. Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. Eur. Respir. J. 44, 97-108 (2014). https://doi.org/10.1183/09031936.00201813
  7. Rothenberg, M. E. Eosinophilia. N. Engl. J. Med. 338, 1592-1600 (1998). https://doi.org/10.1056/NEJM199805283382206
  8. Holgate, S. T. The epidemic of allergy and asthma. Nature 402, B2-B4 (1999). https://doi.org/10.1038/35037000
  9. Green, R. H. et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 360, 1715-1721 (2002). https://doi.org/10.1016/S0140-6736(02)11679-5
  10. Jatakanon, A., Lim, S., Kharitonov, S. A., Chung, K. F. & Barnes, P. J. Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax 53, 91-95 (1998). https://doi.org/10.1136/thx.53.2.91
  11. Humbles, A. A. et al. A critical role for eosinophils in allergic airways remodeling. Science 305, 1776-1779 (2004). https://doi.org/10.1126/science.1100283
  12. Griffin, E. et al. Blood eosinophil number and activity in relation to lung function in patients with asthma and with eosinophilia. J. Allergy Clin. Immunol. 87, 548-557 (1991). https://doi.org/10.1016/0091-6749(91)90014-F
  13. Sanz, M. L., Parra, A., Prieto, I., Dieguez, I. & Oehling, A. K. Serum eosinophil peroxidase (EPO) levels in asthmatic patients. Allergy 52, 417-422 (1997). https://doi.org/10.1111/j.1398-9995.1997.tb01021.x
  14. Zheutlin, L. M., Ackerman, S. J., Gleich, G. J. & Thomas, L. L. Stimulation of basophil and rat mast cell histamine release by eosinophil granule-derived cationic proteins. J. Immunol. 133, 2180-2185 (1984).
  15. Yousefi, S. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14, 949-953 (2008). https://doi.org/10.1038/nm.1855
  16. Dworski, R., Simon, H. U., Hoskins, A. & Yousefi, S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J. Allergy Clin. Immunol. 127, 1260-1266 (2011). https://doi.org/10.1016/j.jaci.2010.12.1103
  17. Kerstan, A., Simon, H. U., Yousefi, S. & Leverkus, M. Extensive accumulation of eosinophil extracellular traps in bullous delayed-pressure urticaria: a pathophysiological link? Br. J. Dermatol. 166, 1151-1152 (2012). https://doi.org/10.1111/j.1365-2133.2012.10848.x
  18. Gevaert, E. et al. Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation. J. Allergy Clin. Immunol. 139, 1849-1860 e1846 (2017). https://doi.org/10.1016/j.jaci.2017.01.019
  19. Ueki, S. et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 121, 2074-2083 (2013). https://doi.org/10.1182/blood-2012-05-432088
  20. Yousefi, S., Simon, D. & Simon, H. U. Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. Curr. Opin. Immunol. 24, 736-739 (2012). https://doi.org/10.1016/j.coi.2012.08.010
  21. Ueki, S. et al. Eosinophil extracellular trap cell death-derived DNA traps: their presence in secretions and functional attributes. J. Allergy Clin. Immunol. 137, 258-267 (2016). https://doi.org/10.1016/j.jaci.2015.04.041
  22. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231-241 (2007). https://doi.org/10.1083/jcb.200606027
  23. Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677-691 (2010). https://doi.org/10.1083/jcb.201006052
  24. Cheng, O. Z. & Palaniyar, N. NET balancing: a problem in inflammatory lung diseases. Front Immunol. 4, 1 (2013).
  25. Fuchs, T. A. et al. Extracellular DNA traps promote thrombosis. Proc. Natl Acad. Sci. USA 107, 15880-15885 (2010). https://doi.org/10.1073/pnas.1005743107
  26. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134-147 (2018).
  27. Choi, Y. et al. Neutrophil extracellular DNA traps induce autoantigen production by airway epithelial cells. Mediat. Inflamm. 2017, 5675029 (2017).
  28. Hwang, E. K. et al. The predictors of poorly controlled asthma in elderly. Allergy Asthma Immunol. Res. 4, 270-276 (2012). https://doi.org/10.4168/aair.2012.4.5.270
  29. Chung, K. F. et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 43, 343-373 (2014). https://doi.org/10.1183/09031936.00202013
  30. Lambrecht, B. N. & Hammad, H. The airway epithelium in asthma. Nat. Med. 18, 684-692 (2012). https://doi.org/10.1038/nm.2737
  31. Schleimer, R. P., Kato, A., Kern, R., Kuperman, D. & Avila, P. C. Epithelium: at the interface of innate and adaptive immune responses. J. Allergy Clin. Immunol. 120, 1279-1284 (2007). https://doi.org/10.1016/j.jaci.2007.08.046
  32. White, S. R. Apoptosis and the airway epithelium. J. Allergy 2011, 948406 (2011).
  33. Akdis, M. et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 138, 984-1010 (2016). https://doi.org/10.1016/j.jaci.2016.06.033
  34. Shichijo, K. et al. Antibody to eosinophil cationic protein suppresses dextran sulfate sodium-induced colitis in rats. World J. Gastroenterol. 11, 4505-4510 (2005). https://doi.org/10.3748/wjg.v11.i29.4505
  35. Bradding, P., Walls, A. F. & Holgate, S. T. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol. 117, 1277-1284 (2006). https://doi.org/10.1016/j.jaci.2006.02.039
  36. Cunha, A. A. et al. Extracellular DNA traps in bronchoalveolar fluid from a murine eosinophilic pulmonary response. Allergy 69, 1696-1700 (2014). https://doi.org/10.1111/all.12507

Cited by

  1. Eosinophil Extracellular Traps and Inflammatory Pathologies—Untangling the Web! vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.02763
  2. Which Factors Associated With Activated Eosinophils Contribute to the Pathogenesis of Aspirin-Exacerbated Respiratory Disease? vol.11, pp.3, 2018, https://doi.org/10.4168/aair.2019.11.3.320
  3. Serum Levels of Eosinophil-Derived Neurotoxin: A Biomarker for Asthma Severity in Adult Asthmatics vol.11, pp.3, 2019, https://doi.org/10.4168/aair.2019.11.3.394
  4. A STING to inflammation and autoimmunity vol.106, pp.1, 2019, https://doi.org/10.1002/jlb.4mir1018-397rr
  5. Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development vol.129, pp.9, 2018, https://doi.org/10.1172/jci127963
  6. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma vol.75, pp.1, 2018, https://doi.org/10.1111/all.13997
  7. Citrus flavonoids suppress IL-5 and ROS through distinct pathways in PMA/ionomycin-induced EL-4 cells vol.11, pp.1, 2020, https://doi.org/10.1039/c9fo02815c
  8. Extracellular Trap by Blood Cells: Clinical Implications vol.17, pp.2, 2018, https://doi.org/10.1007/s13770-020-00241-z
  9. The roles of IL-5 and anti-IL-5 treatment in eosinophilic diseases: Asthma, eosinophilic granulomatosis with polyangiitis, and eosinophilic chronic rhinosinusitis vol.69, pp.2, 2020, https://doi.org/10.1016/j.alit.2020.02.002
  10. In vivo evidence for extracellular DNA trap formation vol.11, pp.4, 2018, https://doi.org/10.1038/s41419-020-2497-x
  11. Distinct functions of eosinophils in severe asthma with type 2 phenotype: clinical implications vol.35, pp.4, 2020, https://doi.org/10.3904/kjim.2020.022
  12. Pulmonary Surfactants: a New Therapeutic Target in Asthma vol.20, pp.11, 2018, https://doi.org/10.1007/s11882-020-00968-8
  13. Lysophosphatidylserine induces eosinophil extracellular trap formation and degranulation: Implications in severe asthma vol.75, pp.12, 2020, https://doi.org/10.1111/all.14450
  14. Citrullinated histone H3, a marker of extracellular trap formation, is increased in blood of stable asthma patients vol.10, pp.1, 2020, https://doi.org/10.1186/s13601-020-00337-8
  15. “NETs and EETs, a Whole Web of Mess” vol.8, pp.12, 2020, https://doi.org/10.3390/microorganisms8121925
  16. The emerging role of type 2 inflammation in asthma vol.17, pp.1, 2021, https://doi.org/10.1080/1744666x.2020.1860755
  17. Role of Eosinophils in Intestinal Inflammation and Fibrosis in Inflammatory Bowel Disease: An Overlooked Villain? vol.12, pp.None, 2018, https://doi.org/10.3389/fimmu.2021.754413
  18. Changes in Type 2 Biomarkers After Anti-IL5 Treatment in Patients With Severe Eosinophilic Asthma vol.13, pp.2, 2021, https://doi.org/10.4168/aair.2021.13.2.330
  19. Emerging Evidence for Pleiotropism of Eosinophils vol.22, pp.13, 2018, https://doi.org/10.3390/ijms22137075
  20. The Enigma of Eosinophil Degranulation vol.22, pp.13, 2018, https://doi.org/10.3390/ijms22137091
  21. The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection vol.10, pp.8, 2018, https://doi.org/10.3390/cells10081891
  22. Effect of TGF-β1 on eosinophils to induce cysteinyl leukotriene E4 production in aspirin-exacerbated respiratory disease vol.16, pp.8, 2021, https://doi.org/10.1371/journal.pone.0256237
  23. Beneficial effects of naringenin and morin on interleukin-5 and reactive oxygen species production in BALB/c mice with ovalbumin-induced asthma vol.25, pp.6, 2021, https://doi.org/10.4196/kjpp.2021.25.6.555