DOI QR코드

DOI QR Code

Empirical study of petroleum-based pitch production via pressure- and temperature-controlled thermal reactions

  • Kim, Jong Gu (Center for C-Industry Incubation, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Ji Hong (Center for C-Industry Incubation, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Im, Ji Sun (Center for C-Industry Incubation, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Bae, Tae-Sung (Jeonju Center, Korea Basic Science Institute)
  • Received : 2017.08.18
  • Accepted : 2017.12.23
  • Published : 2018.06.30

Abstract

Three-stage thermal reactions were conducted to investigate empirical trends of petroleum-based pitch production and the chemical characteristics of pitch produced by controlling the temperature and pressure operating parameters. The softening point of pitch increased with increasing reaction temperature under atmospheric pressure, whereas the pitch yield increased with decreasing reaction temperature under a pressurized condition. Elemental analysis supported the result of decreased hydrogen content. In addition, thermogravimetric analysis revealed that higher reaction temperatures could induce the polymerization and condensation of polyaromatic hydrocarbons (PAHs) with carbon yield at $900^{\circ}C$. The molecular weight distribution (MWD) of pitch was analyzed by MALDI-TOF analysis according to the operating parameters during the thermal reaction. The MALDI-TOF spectrum was normalized to observe the variation in the MWD by Anthracene (178 Da) as a pseudo-component. Range 2-3 and range 6-8 in the MWD coincided with the trends of the pitch yield and the softening point, respectively. The results suggested that pitch yield is related to the PAHs with 2-6 aromatic rings and that the softening point is related to highly condensed PAHs with more than 6 aromatic rings. The anisotropy/isotropy of the pitch was analyzed by polarized light microscopy. The pitch produced under the pressurized condition was isotropic. However, the pitch produced under atmospheric pressure exhibited a well-oriented domain texture. We concluded that volatile contents disturb the polymerization and condensation of PAHs because of side reactions involving the aliphatic contents.

Keywords

Acknowledgement

Grant : Development of preparation technology in petroleum-based pitch and needle/isotropic cokes

Supported by : Ministry of Trade, industry & Energy(MI)

References

  1. A.D. McNaught, A. Wilkinson, International Union of Pure and Applied Chemistry Compendium of Chemical Terminology Gold Book (IUPAC), Blackwell Scientific Publications, Oxford, 2014 p. 1134.
  2. I. Mochida, H. Toshima, H.Y. Korai, T. Varga, J. Mater. Sci. 25 (1990) 3484. https://doi.org/10.1007/BF00575374
  3. J.G. Kim, J.H. Kim, B.J. Song, C.W. Lee, J.S. Im, J. Ind. Eng. Chem. 36 (2016) 293. https://doi.org/10.1016/j.jiec.2016.02.014
  4. Y.D. Park, I. Mochida, Carbon 27 (1989) 925. https://doi.org/10.1016/0008-6223(89)90043-2
  5. J. Kim, U. Im, B. Lee, D. Peck, S.H. Yoon, D.H. Jung, Carbon Lett. 19 (2016) 72. https://doi.org/10.5714/CL.2016.19.072
  6. J.H. Kim, J.G. Kim, C.W. Lee, K.B. Lee, J.S. Im, Carbon Lett. 23 (2017) 48.
  7. D.H. Lee, J. Choi, Y.S. Oh, Y.A. Kim, K.S. Yang, H.J. Ryu, Y.J. Kim, Carbon Lett. 24 (2017) 28.
  8. P. Alvarez, M. Granda, J. Sutil, R. Santamaria, C. Blanco, R. Menendez, Fuel Process. Technol. 92 (2011) 421. https://doi.org/10.1016/j.fuproc.2010.10.004
  9. I. Mochida, Y. Korai, C.H. Ku, F. Watanabe, Y. Sakai, Carbon 38 (2000) 305. https://doi.org/10.1016/S0008-6223(99)00176-1
  10. I. Mochida, K. Shimizu, Y. Korai, H. Otsuka, Y. Sakai, S. Fujiyama, Carbon 28 (1990) 311. https://doi.org/10.1016/0008-6223(90)90005-J
  11. R. Santamaria-Ramirez, E. Romero-Palazon, C. Gomez-de-Salazar, F. Rodriguez-Reinoso, S. Martinez-Saez, M. Martinez-Escandell, H. Marsh, Carbon 37 (1999) 445. https://doi.org/10.1016/S0008-6223(98)00211-5
  12. I. Mochida, Y. Sone, Y. Korai, Carbon 23 (1985) 175. https://doi.org/10.1016/0008-6223(85)90009-0
  13. J.R. Kershaw, K.J.T. Black, Energy Fuels 7 (1993) 420. https://doi.org/10.1021/ef00039a014
  14. M. Perez, M. Granda, R. Santamaria, T. Morgan, R. Menendez, Fuel 83 (2004) 1257. https://doi.org/10.1016/j.fuel.2003.11.012
  15. Y. Cheng, C. Fang, J. Su, R. Yu, T.J. Li, Anal. Appl. Pyrolysis 109 (2014) 90. https://doi.org/10.1016/j.jaap.2014.07.009
  16. H. Shui, Y. Feng, B. Shen, J. Gao, Fuel Process. Technol. 55 (1998) 153. https://doi.org/10.1016/S0378-3820(98)00038-1
  17. W.F. Edwards, L. Jin, M.C. Thies, Carbon 41 (2003) 2761. https://doi.org/10.1016/S0008-6223(03)00386-5
  18. W.A. Burgess, J.J. Pittman, R.K. Marcus, M.C. Thies, Energy Fuels 24 (2010) 4301. https://doi.org/10.1021/ef1002556
  19. M. Martinez-Escandell, P. Torregrosa, H. Marsh, F. Rodriguez-Reinoso, R. Santamaria-Ramirez, C. Gomez-De-Salazar, E. Romero-Palazon, Carbon 37 (1999) 1567. https://doi.org/10.1016/S0008-6223(99)00028-7
  20. J.G. Kim, J.H. Kim, B.J. Song, Y.P. Jeon, C.W. Lee, Y.S. Lee, J.S. Im, Fuel 167 (2016) 25. https://doi.org/10.1016/j.fuel.2015.11.050
  21. J.G. Kim, J.H. Kim, B.J. Song, C.W. Lee, Y.S. Lee, J.S. Im, Fuel 186 (2016) 20. https://doi.org/10.1016/j.fuel.2016.08.052
  22. G. Predeanu, C. Panaitescu, M. Balanescu, G. Bieg, A.G. Borrego, M.A. Diez, P. Hackley, B. Kwiecinska, M. Marques, M. Mastalerz, M. Misz-Kennan, S. Pusz, I. Suarez Ruiz, S. Rodrigues, A.K. Singh, A.K. Varma, A. Zdravkov, D. Zivotic, Int. J. Coal Geol. 139 (2015) 63. https://doi.org/10.1016/j.coal.2014.07.011

Cited by

  1. 고밀도 탄소블럭 제조를 위한 코크스와 바인더피치의 젖음성에 미치는 불소화의 영향 vol.29, pp.6, 2018, https://doi.org/10.14478/ace.2018.1080
  2. 열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석 vol.30, pp.3, 2018, https://doi.org/10.14478/ace.2019.1010
  3. Effect of petroleum pitch coating on electrochemical performance of graphite as anode materials vol.36, pp.10, 2019, https://doi.org/10.1007/s11814-019-0354-3
  4. 석유 부산물의 물리화학적 분석을 통한 화재폭발 특성연구 vol.30, pp.5, 2018, https://doi.org/10.14478/ace.2019.1061
  5. Effect of kneading and carbonization temperature on the structure of the carbon block for thermally conductive bulk graphites vol.31, pp.6, 2018, https://doi.org/10.1007/s42823-021-00288-5