DOI QR코드

DOI QR Code

Synthesis and characterization of orthorhombic-MoO3 nanofibers with controlled morphology and diameter

  • Han, Yosep (Department of Chemical and Environmental Engineering, University of California-Riverside) ;
  • Rheem, Youngwoo (Department of Chemical and Environmental Engineering, University of California-Riverside) ;
  • Lee, Kyu-Hwan (Surface Technology Division, Korea Institute of Materials Science) ;
  • Kim, Hyunjung (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Myung, Nosang V. (Department of Chemical and Environmental Engineering, University of California-Riverside)
  • Received : 2017.08.09
  • Accepted : 2017.12.31
  • Published : 2018.06.30

Abstract

Orthorhombic molybdenum trioxide (${\alpha}-MoO_3$) nanofibers with controlled morphology and diameter were synthesized by adjusting electrospinning and calcination conditions. Experimental design was utilized to vary several factors including solution properties, electrospinning parameters and environmental conditions to analyze their effects toward nanofiber morphology (i.e., diameter and bead density). Polyvinylpyrrolidone (PVP) content, which effects viscosity, predominated control morphology of nanofibers where low PVP content (i.e., 3.0 wt.%) yielded heavily beaded nanofibers with smaller diameter. The morphology of nanofibers was also tuned by adjusting electrospinning parameters (i.e., applied voltage and feed rate), where smallest nanofibers with minimum bead density was achieved at applied voltage of 8 kV with feed rate of 0.5 mL/h. The as-electrospun ammonium molybdate/polyvinylpyrrolidone nanofibers were calcined to ${\alpha}-MoO_3$ nanofibers in air. The ramping rate significantly altered the morphology of ${\alpha}-MoO_3$ nanofibers where rapid thermal annealing with the ramping rate of $15^{\circ}C/s$ yielded smoother nanofibers whereas slower ramping rate yielded platelet-like structures. BET analysis showed an increase in specific surface area with decreasing average diameter (i.e., $6.7m^2/g$ for $125nm-86.4m^2/g$ for 35 nm).

Keywords

Acknowledgement

Supported by : Institute of Materials Science (KIMS), National Research Foundation of Korea

References

  1. X.W. Lou, H.C. Zeng, Chem. Mater. 14 (2002) 4781. https://doi.org/10.1021/cm0206237
  2. T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9 (2010) 146. https://doi.org/10.1038/nmat2612
  3. J. Swiatowska-Mrowiecka, S. de Diesbach, V. Maurice, S. Zanna, L. Klein, E. Briand, I. Vickridge, P. Marcus, J. Phys. Chem. C 112 (2008) 11050. https://doi.org/10.1021/jp800147f
  4. K. Dewangan, N.N. Sinha, P.K. Sharma, A.C. Pandey, N. Munichandraiah, N.S. Gajbhiye, CrystEngComm 13 (2011) 927. https://doi.org/10.1039/C0CE00271B
  5. S.H. Lee, Y.H. Kim, R. Deshpande, P.A. Parilla, E. Whitney, D.T. Gillaspie, K.M. Jones, A.H. Mahan, S.B. Zhang, A.C. Dillon, Adv. Mater. 20 (2008) 3627. https://doi.org/10.1002/adma.200800999
  6. L. Zhou, L.C. Yang, P. Yuan, J. Zou, Y.P. Wu, C.Z. Yu, J. Phys. Chem. C 114 (2010) 21868. https://doi.org/10.1021/jp108778v
  7. P. Meduri, E. Clark, J.H. Kim, E. Dayalan, G.U. Sumanasekera, M.K. Sunkara, Nano Lett. 12 (2012) 1784. https://doi.org/10.1021/nl203649p
  8. S. Balendhran, J.K. Deng, J.Z. Ou, S. Walia, J. Scott, J.S. Tang, K.L. Wang, M.R. Field, S. Russo, S. Zhuiykov, M.S. Strano, N. Medhekar, S. Sriram, M. Bhaskaran, K. Kalantar-Zadeh, Adv. Mater. 25 (2013) 109. https://doi.org/10.1002/adma.201203346
  9. A. Prasad, D. Kubinski, P. Gouma, Sens. Actuators B 93 (2003) 25. https://doi.org/10.1016/S0925-4005(03)00336-8
  10. M.B. Rahmani, S.-H. Keshmiri, J. Yu, A. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y. Li, W. Wlodarski, K. Kalantar-Zadeh, Sens. Actuators B 145 (2010) 13. https://doi.org/10.1016/j.snb.2009.11.007
  11. L. Zheng, Y. Xu, D. Jin, Y. Xie, Chem. Mater. 21 (2009) 5681. https://doi.org/10.1021/cm9023887
  12. T.-K. Park, S.J. Kim, N. You, J. Cho, S.J. Lee, J.H. Lee, J.-K. Jeon, J. Ind. Eng. Chem. 38 (2016) 193. https://doi.org/10.1016/j.jiec.2016.05.009
  13. Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J.-J. Zhu, CrystEngComm 12 (2010) 3740. https://doi.org/10.1039/c000744g
  14. A. Chithambararaj, N. Rajeswari Yogamalar, A.C. Bose, Cryst. Growth Des. 16 (2016) 1984. https://doi.org/10.1021/acs.cgd.5b01571
  15. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv Mater. 15 (2003) 353. https://doi.org/10.1002/adma.200390087
  16. H. Fang, Y. Wu, J. Mater. Chem. A 2 (2014) 6004. https://doi.org/10.1039/C3TA14129B
  17. J. Bai, A. Allaoui, Compos. A 34 (2003) 689.
  18. M.P. Zach, K.H. Ng, R.M. Penner, Science 290 (2000) 2120. https://doi.org/10.1126/science.290.5499.2120
  19. M. Niederberger, F. Krumeich, H.-J. Muhr, M. Muller, R. Nesper, J. Mater. Chem. 11 (2001) 1941. https://doi.org/10.1039/b101311o
  20. R. Liang, H. Cao, D. Qian, Chem Commun. 47 (2011) 10305. https://doi.org/10.1039/c1cc14030b
  21. V. Thavasi, G. Singh, S. Ramakrishna, Energy Environ. Sci. 1 (2008) 205. https://doi.org/10.1039/b809074m
  22. S.Q. Wang, J.H. He, L. Xu, Polym. Int. 57 (2008) 1079. https://doi.org/10.1002/pi.2447
  23. M.J. Nalbandian, M. Zhang, J. Sanchez, Y.-H. Choa, J. Nam, D.M. Cwiertny, N.V. Myung, Chemosphere 144 (2016) 975. https://doi.org/10.1016/j.chemosphere.2015.08.056
  24. G. Ico, A. Showalter, W. Bosze, S.C. Gott, B.S. Kim, M.P. Rao, N.V. Myung, J. Nam, J. Mater. Chem. A 4 (2016) 2293. https://doi.org/10.1039/C5TA10423H
  25. W. Luo, X. Hu, Y. Sun, Y. Huang, Phys. Chem. Chem. Phys. 13 (2011) 16735. https://doi.org/10.1039/c1cp22184a
  26. S. Li, C. Shao, Y. Liu, S. Tang, R. Mu, J. Phys. Chem. Solids 67 (2006) 1869. https://doi.org/10.1016/j.jpcs.2006.04.017
  27. P. Gouma, K. Kalyanasundaram, A. Bishop, J. Mater. Res. 21 (2006) 2904. https://doi.org/10.1557/jmr.2006.0353
  28. D. Li, Y. Xia, Adv. Mater. 16 (2004) 1151. https://doi.org/10.1002/adma.200400719
  29. S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, Z. Ma, An Introduction to Electrospinning and Nanofibers, World Scientific, Singapore, 2005.
  30. M.J. Nalbandian, K.E. Greenstein, D. Shuai, M. Zhang, Y.-H. Choa, G.F. Parkin, N. V. Myung, D.M. Cwiertny, Environ. Sci. Technol. 49 (2015) 1654. https://doi.org/10.1021/es502963t
  31. Y. Han, S. Kim, H. Kim, J. Park, J. Am. Ceram. Soc. 94 (2011) 2742. https://doi.org/10.1111/j.1551-2916.2011.04681.x
  32. Y. Han, H. Kim, J. Park, S.H. Lee, J.Y. Kim, Int. J. Hydrogen Energy 37 (2012) 14240. https://doi.org/10.1016/j.ijhydene.2012.07.030
  33. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309. https://doi.org/10.1021/ja01269a023
  34. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373. https://doi.org/10.1021/ja01145a126
  35. M.J. Nalbandian, M. Zhang, J. Sanchez, Y.-H. Choa, D.M. Cwiertny, N.V. Myung, J. Mol. Catal. A 404 (2015) 18.
  36. T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Eur. Polym. J. 41 (2005) 409. https://doi.org/10.1016/j.eurpolymj.2004.10.010
  37. M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Polymer 43 (2002) 3303. https://doi.org/10.1016/S0032-3861(02)00136-2
  38. A. Koski, K. Yim, S. Shivkumar, Mater. Lett. 58 (2004) 493. https://doi.org/10.1016/S0167-577X(03)00532-9
  39. Y. Zhang, H. Ouyang, C.T. Lim, S. Ramakrishna, Z.M. Huang, J. Biomed. Mater. Res. B 72 (2005) 156.
  40. Z.J. Li, Y.Z. Xu, L.L. Fan, W.M. Kang, B.W. Cheng, Mater. Des. 92 (2016) 95. https://doi.org/10.1016/j.matdes.2015.12.037
  41. N.A.M. Barakat, M.A. Kanjwal, F.A. Sheikh, H.Y. Kim, Polymer 50 (2009) 4389. https://doi.org/10.1016/j.polymer.2009.07.005
  42. W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, Polymer 45 (2004) 2959. https://doi.org/10.1016/j.polymer.2004.03.006
  43. A. Neamnark, R. Rujiravanit, P. Supaphol, Carbohydr. Polym. 66 (2006) 298. https://doi.org/10.1016/j.carbpol.2006.03.015
  44. X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Polymer 43 (2002) 4403. https://doi.org/10.1016/S0032-3861(02)00275-6
  45. J.S. Choi, S.W. Lee, L. Jeong, S.-H. Bae, B.C. Min, J.H. Youk, W.H. Park, Int. J. Biol. Macromol. 34 (2004) 249. https://doi.org/10.1016/j.ijbiomac.2004.06.001
  46. X. Yuan, Y. Zhang, C. Dong, J. Sheng, Polym. Int. 53 (2004) 1704. https://doi.org/10.1002/pi.1538
  47. C. Mit-uppatham, M. Nithitanakul, P. Supaphol, Macromol. Chem. Phys. 205 (2004) 2327. https://doi.org/10.1002/macp.200400225
  48. L. Wannatong, A. Sirivat, P. Supaphol, Polym. Int. 53 (2004) 1851. https://doi.org/10.1002/pi.1599
  49. M. Zheng, M. Gu, Y. Jin, G. Jin, Mater. Sci. Eng. B 77 (2000) 55. https://doi.org/10.1016/S0921-5107(00)00465-7
  50. X. Wang, H. Fan, P. Ren, H. Yu, J. Li, Mater. Res. Bull. 47 (2012) 1734. https://doi.org/10.1016/j.materresbull.2012.03.042
  51. W. Shi, W. Lu, L. Jiang, J. Colloid Interface Sci. 340 (2009) 291. https://doi.org/10.1016/j.jcis.2009.09.011
  52. W.S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, M. Yoshimura, J. Am. Ceram. Soc. 80 (1997) 765. https://doi.org/10.1111/j.1151-2916.1997.tb02895.x
  53. L.L. Cai, P.M. Rao, X.L. Zheng, Nano Lett. 11 (2011) 872. https://doi.org/10.1021/nl104270u
  54. H. Matsumoto, A. Tanioka, Membranes 1 (2011) 249. https://doi.org/10.3390/membranes1030249
  55. L.A. Riley, S.-H. Lee, L. Gedvilias, A.C. Dillon, J. Power Sources 195 (2010) 588. https://doi.org/10.1016/j.jpowsour.2009.08.013
  56. J.S. Chen, Y.L. Cheah, S. Madhavi, X.W. Lou, J. Phys. Chem. 114 (2010) 8675.

Cited by

  1. Electrospun Cobalt-Doped MoS2 Nanofibers for Electrocatalytic Hydrogen Evolution vol.166, pp.13, 2018, https://doi.org/10.1149/2.1041912jes
  2. Facile synthesis of novel MoO3 nanoflowers for high-performance gas sensor vol.30, pp.7, 2018, https://doi.org/10.1007/s10854-019-00967-0
  3. Photo-organometallic, Nanoparticle Nucleation on Graphene for Cascaded Doping vol.13, pp.11, 2018, https://doi.org/10.1021/acsnano.9b05484
  4. Electrospun Hybrid MoS2 Nanofibers for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction vol.167, pp.6, 2018, https://doi.org/10.1149/1945-7111/ab86c2
  5. 폐플라스틱의 부유선별 및 기능성 소재로의 활용 연구동향 vol.29, pp.6, 2020, https://doi.org/10.7844/kirr.2020.29.6.15