DOI QR코드

DOI QR Code

Porous PEDOT-SiO2 hybrid conductive micro particles prepared by simultaneous co-vaporized vapor phase polymerization

  • Jung, Seul Gi (Division of Advanced Materials Engineering, Kongju National University) ;
  • Cho, Kuk Young (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Yim, Jin-Heong (Division of Advanced Materials Engineering, Kongju National University)
  • Received : 2017.12.21
  • Accepted : 2018.02.01
  • Published : 2018.07.31

Abstract

Porous $PEDOT-SiO_2$ particles were successfully prepared using simultaneous co-vaporized vapor phase polymerization (SC-VPP). By controlling the TEOS content, the morphologies of the obtained particles could be tuned from appearance of hollow egg shells aggregates to the hybrid particle composed of microspheres. Despite only having up to 40% of TEOS in the SC-VPP process, $SiO_2$ accounts for over 90% of the resulting hybrid particle, because the hydrolysis/condensation reactions of TEOS would be much faster as compared with the PEDOT polymerization. The specific capacitance of a single hybrid particle decreased with increasing $SiO_2$ portion, owing to changes in its external/internal structures.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. C.K. Chiang, C.R. Fincher Jr., Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Phys. Rev. Lett. 39 (1977) 1098. https://doi.org/10.1103/PhysRevLett.39.1098
  2. M. Irimia-Vladu, Chem. Soc. Rev. 43 (2014) 588. https://doi.org/10.1039/C3CS60235D
  3. M. Gerard, A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17 (2002) 345. https://doi.org/10.1016/S0956-5663(01)00312-8
  4. N.K. Guimard, N. Gomez, C.E. Schmidt, Prog. Polym. Sci. 32 (2007) 876. https://doi.org/10.1016/j.progpolymsci.2007.05.012
  5. P.A. Levermore, L. Chen, X. Wang, R. Das, Donal D.C. Bradley, Adv. Mater. 19 (2007) 2385.
  6. D.M. Welsh, A. Kumar, E.W. Meijer, J.R. Reynolds, Adv. Mater. 16 (1999) 1379.
  7. K.S. Lee, J.H. Yun, Y.-H. Han, J.-H. Yim, N.-G. Park, K.Y. Cho, J.H. Park, J. Mater. Chem. 21 (2011) 15193. https://doi.org/10.1039/c1jm13408f
  8. J.M. D'Arcy, M.F. El-Kady, P.P. Khine, L. Zhang, S.H. Lee, N.R. Davis, D.S. Liu, M.T. Yeung, S.Y. Kim, C.L. Turner, A.T. Lech, P.T. Hammond, R.B. Kaner, ACS Nano 8 (2014) 1500. https://doi.org/10.1021/nn405595r
  9. J. Ahn, S. Yoon, S.G. Jung, J.-H. Yim, K.Y. Cho, J. Mater. Chem. A 5 (2017) 21214. https://doi.org/10.1039/C7TA05591A
  10. A.M. Nardes, M. Kemerink, M.M.D. Kok, E. Vinken, K. Maturova, R.A.J. Janssen, Org. Electron. 9 (2008) 727. https://doi.org/10.1016/j.orgel.2008.05.006
  11. B. Somboonsub, M.A. Invernale, S. Thongyai, P. Praserthdam, D.A. Scola, G.A. Sotzing, Polymer 51 (2010) 1231. https://doi.org/10.1016/j.polymer.2010.01.048
  12. Y. Wei, J.-M. Yeh, D. Jin, X. Jia, J. Wang, G.-W. Jang, C. Chen, R.W. Gumbs, Chem. Mater. 7 (1995) 969. https://doi.org/10.1021/cm00053a024
  13. X. Zeng, T. Zhou, C. Leng, Z. Zang, M. Wang, W. Hu, X. Tang, S. Lu, L. Fang, M. Zhou, J. Mater. Chem. A. 5 (2017) 1749. https://doi.org/10.1039/C6TA10345F
  14. I. Pang, S. Kim, J. Lee, J. Nanosci. Nanotechnol. 7 (2007) 3792. https://doi.org/10.1166/jnn.2007.028
  15. M. Vosgueritchian, D.J. Lipomi, Z. Bao, Adv. Funct. Mater. 22 (2012) 421. https://doi.org/10.1002/adfm.201101775
  16. H. Wang, H. Zhou, A. Gestos, J. Fang, H. Niu, J. Ding, T. Lin, Soft Matter 9 (2013) 277. https://doi.org/10.1039/C2SM26871J
  17. D. Song, M. Li, Y. Li, X. Zhao, B. Jiang, Y. Jiang, ACS Appl. Mater Interfaces 6 (2014) 7126. https://doi.org/10.1021/am500082x
  18. E. Liu, C. Liu, Z. Zhu, J. Xu, F. Jiang, T. Wang, C. Li, J. Comp. Mater. 0 (2017) 1.
  19. J.J. Richards, A.D. Scherbarth, N.J. Wagner, P.D. Butler, ACS. Appl. Mater. Interaces 8 (2016) 24089. https://doi.org/10.1021/acsami.6b07372
  20. K.B. Hatzell, M. Boota, Y. Gogotsi, Chem. Soc. Rev. 44 (2015) 8664. https://doi.org/10.1039/C5CS00279F
  21. Y.-H. Han, J. T-Sejdic, B. Wright, J.-H. Yim, Macromol. Chem. Phys. 212 (2011) 521. https://doi.org/10.1002/macp.201000634
  22. J.-H. Yim, Compos. Sci. Techol. 86 (2013) 45. https://doi.org/10.1016/j.compscitech.2013.06.023
  23. R. Khadka, J.-H. Yim, Macromol. Res. 23 (2015) 559. https://doi.org/10.1007/s13233-015-3079-0
  24. Y.S. Ko, J.-H. Yim, Polymer 93 (2016) 167. https://doi.org/10.1016/j.polymer.2016.04.030
  25. S.W. Kim, S.W. Lee, J. Kim, J.-H. Yim, K.Y. Cho, Polymer 102 (2016) 127. https://doi.org/10.1016/j.polymer.2016.09.008
  26. J.S. Choi, J.S. Park, B. Kim, B.-T. Lee, J.-H. Yim, Polymer 120 (2017) 95.
  27. S.B. Adeloju, G.G. Wallace, Analyst 121 (1996) 699. https://doi.org/10.1039/an9962100699
  28. B.G. Chung, K.-H. Lee, A. Khademhosseini, S.-H. Lee, Lab Chip 12 (2012) 45. https://doi.org/10.1039/C1LC20859D
  29. M. Mumtaz, A.D. Cuendias, J.-L. Putaux, E. Cloutet, H. Cramail, Macromol. Rapid Commun. 27 (2006) 1446. https://doi.org/10.1002/marc.200600343
  30. J.W. Choi, M.G. Han, S.Y. Kim, S.G. Oh, S.S. Im, Synth. Met. 141 (2004) 293. https://doi.org/10.1016/S0379-6779(03)00419-3
  31. M.G. Han, S.H. Foulger, ChemComm 20 (2004) 2054.
  32. M.-K. Park, K. Onishi, J. Locklin, F. Caruso, R.C. Advincula, Langmuir 19 (2003) 8550. https://doi.org/10.1021/la034827t
  33. S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H.A. Stone, P. Garstecki, D.B. Weibel, I. Gitlin, G.M. Whitesides, Angew. Chem. 117 (2005) 734. https://doi.org/10.1002/ange.200462226
  34. S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Lab Chip 8 (2008) 198. https://doi.org/10.1039/b715524g
  35. S.W. Lee, J.S. Choi, K.Y. Cho, J.-H. Yim, Euro. Polym. J. 80 (2016) 40. https://doi.org/10.1016/j.eurpolymj.2016.04.034
  36. X. Gong, W. Wen, P. Sheng, Langmuir 25 (2009) 7072. https://doi.org/10.1021/la900120c
  37. M.R. Kim, S. Lee, J.-K. Park, K.Y. Cho, ChemComm 46 (2010) 7433.
  38. K.-H. Hwangbo, M.R. Kim, C.-S. Lee, K.Y. Cho, Soft Matter 7 (2011) 10874. https://doi.org/10.1039/c1sm06529g

Cited by

  1. 동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조 vol.29, pp.3, 2018, https://doi.org/10.14478/ace.2018.1036
  2. Novel Preparation Route of Conductive PPy-PAN Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization vol.42, pp.4, 2018, https://doi.org/10.7317/pk.2018.42.4.701
  3. Elucidation of the Controversial Layer Growth Mechanism of Vapor Phase Polymerization in the Preparation of Conductive Poly(3,4‐ethylenedioxythiophene)‐SiO 2 Hybrid Films vol.7, pp.14, 2018, https://doi.org/10.1002/admi.202000046
  4. Effect of incorporating silica extracted from natural source in poly(3-hexylthiophene-2,5-diyl) vol.28, pp.12, 2018, https://doi.org/10.1007/s10965-021-02852-z