DOI QR코드

DOI QR Code

Improved corrosion resistance of mild steel against acid activation: Impact of novel Elaeis guineensis and silver nanoparticles

  • Received : 2017.11.19
  • Accepted : 2018.02.05
  • Published : 2018.07.31

Abstract

Influence of novel green Elaeis guineensis (EG) and silver nanoparticles (AgNPs) on the improved corrosion resistance of mild steel against acute acid attack is reported. Such EG/AgNPs were synthesized from palm oil leaf extracts and used as inhibitor with varying contents to inspect the feasibility of modifying the acid (1 M $HCl_{(aq)}$) mediated anti-corrosion behaviour of mild steel. The structural and morphological properties of the extracted EG/AgNPs inhibitor (in powder form) were determined using TEM, XRD, and EDX analyses. Furthermore, the acid solution exposed mild steel specimens were characterized via FESEM, EDX, AFM, XRD, weight loss, polarization and electrochemical impedance measurements. Mild steel surface was found to adsorb the EG/AgNPs and formed a protective film advantageous for inhibiting the acid attack. Steel specimen incorporated with 10% (v/v) of EG/AgNPs inhibitor revealed maximum inhibition efficiency of 94.1%.

Keywords

Acknowledgement

Supported by : Ministry of Higher Education, RMC Universiti Teknologi Malaysia

References

  1. G. Ji, S. Anjum, S. Sundaram, R. Prakash, Corros. Sci. 90 (2015) 107. https://doi.org/10.1016/j.corsci.2014.10.002
  2. K. Rose, B.S. Kim, K. Rajagopal, S. Arumugam, K. Devarayan, J. Mol. Liq. 214 (2016) 111. https://doi.org/10.1016/j.molliq.2015.12.008
  3. J. Bhawsar, P. Jain, P. Jain, Alexandria Eng. J. 54 (2015) 769. https://doi.org/10.1016/j.aej.2015.03.022
  4. M.A. Amin, M.M. Ibrahim, Corros. Sci. 53 (2011) 873. https://doi.org/10.1016/j.corsci.2010.10.022
  5. S.H. Zaferani, M. Sharifi, D. Zaarei, M.R. Shishesaz, J. Environ. Chem. Eng. 1 (2013) 652. https://doi.org/10.1016/j.jece.2013.09.019
  6. Q. Zhang, Y. Hua, Electrochim. Acta 54 (2009) 1881. https://doi.org/10.1016/j.electacta.2008.10.025
  7. M.A. Asaad, M. Ismail, P.B. Raja, N.H.A. Khalid, Surf. Rev. Lett. 24 (2017) 1.
  8. M.A. Bedair, S.A. Soliman, M.S. Metwally, J. Ind. Eng. Chem. 41 (2016) 10. https://doi.org/10.1016/j.jiec.2016.07.005
  9. M. Mehdipour, B. Ramezanzadeh, S.Y. Arman, J. Ind. Eng. Chem. 21 (2015) 318. https://doi.org/10.1016/j.jiec.2014.02.041
  10. P. Singh, M. Makowska-Janusik, P. Slovensky, M.A. Quraishi, J. Mol. Liq. 220 (2016) 71. https://doi.org/10.1016/j.molliq.2016.04.042
  11. V. Shubina, L. Gaillet, T. Chaussadent, T. Meylheuc, J. Creus, J. Clean. Prod. 112 (2016) 666. https://doi.org/10.1016/j.jclepro.2015.07.124
  12. P. Dohare, K.R. Ansari, M.A. Quraishi, I.B. Obot, J. Ind. Eng. Chem. 52 (2017) 197. https://doi.org/10.1016/j.jiec.2017.03.044
  13. M. Shabani-Nooshabadi, M.S. Ghandchi, J. Ind. Eng. Chem. 31 (2015) 231. https://doi.org/10.1016/j.jiec.2015.06.028
  14. E.A. Noor, Mater. Chem. Phys. 131 (2011) 160. https://doi.org/10.1016/j.matchemphys.2011.08.001
  15. H. Ju, Z.P. Kai, Y. Li, Corros. Sci. 50 (2008) 865. https://doi.org/10.1016/j.corsci.2007.10.009
  16. R. Solmaz, Corros. Sci. 81 (2014) 75. https://doi.org/10.1016/j.corsci.2013.12.006
  17. M. Faustin, A. Maciuk, P. Salvin, C. Roos, M. Lebrini, Corros. Sci. 92 (2015) 287. https://doi.org/10.1016/j.corsci.2014.12.005
  18. M.K. Awad, M.S. Metwally, S.A. Soliman, A.A. El-Zomrawy, M.A. bedair, J. Ind. Eng. Chem. 20 (2014) 796. https://doi.org/10.1016/j.jiec.2013.06.009
  19. V. Hemapriya, M. Prabakaran, K. Parameswari, S. Chitra, S.-H. Kim, I.-M. Chung, J. Ind. Eng. Chem. 40 (2016) 106. https://doi.org/10.1016/j.jiec.2016.06.013
  20. S. John, B. Joseph, K. Aravindakshan, A. Joseph, Mater. Chem. Phys. 122 (2010) 374. https://doi.org/10.1016/j.matchemphys.2010.03.008
  21. P.B. Raja, A.K. Qureshi, A.A. Rahim, H. Osman, K. Awang, Corros. Sci. 69 (2013) 292. https://doi.org/10.1016/j.corsci.2012.11.042
  22. S.A. Asipita, M. Ismail, M.Z.A. Majid, Z.A. Majid, C. Abdullah, J. Mirza, J. Clean. Prod. 67 (2014) 139. https://doi.org/10.1016/j.jclepro.2013.12.033
  23. A.A. Gurten, H. Keles, E. Bayol, F. Kandemirli, J. Ind. Eng. Chem. 27 (2015) 68. https://doi.org/10.1016/j.jiec.2014.11.046
  24. A. Ostovari, S. Hoseinieh, M. Peikari, S. Shadizadeh, S. Hashemi, Corros. Sci. 51 (2009) 1935. https://doi.org/10.1016/j.corsci.2009.05.024
  25. M. Bethencourt, F. Botana, J. Calvino, M. Marcos, M. Rodriguez-Chacon, Corros. Sci. 40 (1998) 1803. https://doi.org/10.1016/S0010-938X(98)00077-8
  26. F. Kurniawan, K.A. Madurani, Prog. Org. Coat. 88 (2015) 256. https://doi.org/10.1016/j.porgcoat.2015.07.010
  27. H. Bentrah, Y. Rahali, A. Chala, Corros. Sci. 82 (2014) 426. https://doi.org/10.1016/j.corsci.2013.12.018
  28. V.V. Torres, R.S. Amado, C.F. de Sa, T.L. Fernandez, C.A. da Silva Riehl, A.G. Torres, E. D'Elia, Corros. Sci. 53 (2011) 2385. https://doi.org/10.1016/j.corsci.2011.03.021
  29. N. Negm, N. Kandile, I. Aiad, M. Mohammad, Colloids Surf. A: Physicochem. Eng. Asp. 391 (2011) 224. https://doi.org/10.1016/j.colsurfa.2011.09.032
  30. P. Okafor, M.E. Ikpi, I. Uwah, E. Ebenso, U. Ekpe, S. Umoren, Corros. Sci. 50 (2008) 2310. https://doi.org/10.1016/j.corsci.2008.05.009
  31. M. Prabakaran, S.-H. Kim, V. Hemapriya, I.-M. Chung, J. Ind. Eng. Chem. 37 (2016) 47. https://doi.org/10.1016/j.jiec.2016.03.006
  32. Z. Wang, C. Xu, X. Li, Z. Liu, Colloids Surf. A: Physicochem. Eng. Asp. 485 (2015) 102. https://doi.org/10.1016/j.colsurfa.2015.09.015
  33. T. Mochochoko, O.S. Oluwafemi, D.N. Jumbam, S.P. Songca, Carbohydr. Polym. 98 (2013) 290. https://doi.org/10.1016/j.carbpol.2013.05.038
  34. D.K. Verma, S.H. Hasan, R.M. Banik, J. Photochem. Photobiol. B: Biol. 155 (2016) 51. https://doi.org/10.1016/j.jphotobiol.2015.12.008
  35. V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Mater. Sci. Eng. C 58 (2016) 36. https://doi.org/10.1016/j.msec.2015.08.018
  36. M. Nasrollahzadeh, S.M. Sajadi, F. Babaei, M. Maham, J. Colloid Interface Sci. 450 (2015) 374. https://doi.org/10.1016/j.jcis.2015.03.033
  37. M.J. Ahmed, G. Murtaza, A. Mehmood, T.M. Bhatti, Mater. Lett. 153 (2015) 10. https://doi.org/10.1016/j.matlet.2015.03.143
  38. K. Niraimathi, V. Sudha, R. Lavanya, P. Brindha, Colloids Surf. B: Biointerfaces 102 (2013) 288. https://doi.org/10.1016/j.colsurfb.2012.08.041
  39. T. Suwatthanarak, B. Than-ardna, D. Danwanichakul, P. Danwanichakul, Mater. Lett. 168 (2016) 31. https://doi.org/10.1016/j.matlet.2016.01.026
  40. P.V. Kumar, S. Pammi, P. Kollu, K. Satyanarayana, U. Shameem, Ind. Crops Prod. 52 (2014) 562. https://doi.org/10.1016/j.indcrop.2013.10.050
  41. P. Logeswari, S. Silambarasan, J. Abraham, Sci. Iranica 20 (2013) 1049.
  42. D.A. Kumar, V. Palanichamy, S.M. Roopan, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 127 (2014) 168. https://doi.org/10.1016/j.saa.2014.02.058
  43. Y.Y. Mo, Y.K. Tang, S.Y. Wang, J.M. Lin, H.B. Zhang, D.Y. Luo, Mater. Lett. 144 (2015) 165. https://doi.org/10.1016/j.matlet.2015.01.004
  44. D.R. Raj, S. Prasanth, T. Vineeshkumar, C. Sudarsanakumar, Sens. Actuators B: Chem. 224 (2016) 600. https://doi.org/10.1016/j.snb.2015.10.106
  45. V.K. Sharma, R.A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145 (2009) 83. https://doi.org/10.1016/j.cis.2008.09.002
  46. N.G. Bastu's, F. Merkoci, J. Piella, V. Puntes, Chem. Mater. 26 (2014) 2836. https://doi.org/10.1021/cm500316k
  47. K.A. Zahidah, S. Kakooei, M.C. Ismail, P. Bothi Raja, Prog. Org. Coat. 111 (2017) 175. https://doi.org/10.1016/j.porgcoat.2017.05.018
  48. D.G. Shchukin, H. Mohwald, Adv. Funct. Mater. 17 (2007) 1451. https://doi.org/10.1002/adfm.200601226
  49. V.S. Saji, R.M. Cook, Corrosion Protection and Control Using Nanomaterials, Woodhead, UK, 2012.
  50. R.S. Abdel Hameed, A.A.H. Abu Nawwas, A.H. Shehata, Adv. Appl. Sci. Res. 4 (2013) 126.
  51. Y. Sasikumar, A.M. Kumar, Z.M. Gasem, E.E. Ebenso, Appl. Surf. Sci. 330 (2015) 207. https://doi.org/10.1016/j.apsusc.2015.01.002
  52. I.B. Obot, S.A. Umoren, A.S. Johnson, J. Mater. Environ. Sci. 4 (2013) 1013.
  53. A.M. Atta, G.A. El Mahdy, H.A. Al Lohedan, Int. J. Electrochem. Sci. 8 (2013) 4873.
  54. M.A. Migahed, E.M.S. Azzam, S.M.I. Morsy, Corros. Sci. 51 (2009) 1636. https://doi.org/10.1016/j.corsci.2009.04.010
  55. M.M. Solomon, S.A. Umoren, E.J. Abai, J. Mol. Liq. 212 (2015) 340. https://doi.org/10.1016/j.molliq.2015.09.028
  56. H.H. Hefni, E.M. Azzam, E.A. Badr, M. Hussein, S.M. Tawfik, Int. J. Biol. Macromol. 83 (2016) 297. https://doi.org/10.1016/j.ijbiomac.2015.11.073
  57. I. Khalid, O. Sulaiman, R. Hashim, W. Razak, N. Jumhuri, M.S.M. Rasat, Mater. Des. 68 (2015) 24. https://doi.org/10.1016/j.matdes.2014.12.007
  58. K. Szymona, P. Borysiuk, P. San H'ng, K.L. Chin, M. Maminski, Mater. Des. 53 (2014) 425. https://doi.org/10.1016/j.matdes.2013.07.030
  59. S.K. Chang, A. Ismail, T. Yanagita, N.M. Esa, M.T.H. Baharuldin, J. Funct. Foods 14 (2015) 63. https://doi.org/10.1016/j.jff.2015.01.011
  60. S. Kok, M. Ong-Abdullah, G.C. Ee, P. Namasivayam, Food Chem.129 (2011) 1343. https://doi.org/10.1016/j.foodchem.2011.05.023
  61. V. Soundararajan, S. Sreenivasan, APCBEE Procedia 2 (2012) 153. https://doi.org/10.1016/j.apcbee.2012.06.028
  62. R. Mariselvam, A. Ranjitsingh, A.U.R. Nanthini, K. Kalirajan, C. Padmalatha, P.M. Selvakumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 129 (2014) 537. https://doi.org/10.1016/j.saa.2014.03.066
  63. S. Banerjee, V. Srivastava, M. Singh, Corros. Sci. 59 (2012) 35. https://doi.org/10.1016/j.corsci.2012.02.009
  64. D. Eyu, H. Esah, C. Chukwuekezie, J. Idris, I. Mohammad, ARON J. Eng. Appl. Sci. 8 (2013) 326.
  65. K. Anupama, K. Ramya, K. Shainy, A. Joseph, Mater. Chem. Phys. 167 (2015) 28. https://doi.org/10.1016/j.matchemphys.2015.09.013
  66. P. Roy, P. Karfa, U. Adhikari, D. Sukul, Corros. Sci. 88 (2014) 246. https://doi.org/10.1016/j.corsci.2014.07.039
  67. P. Mourya, S. Banerjee, M. Singh, Corros. Sci. 85 (2014) 352. https://doi.org/10.1016/j.corsci.2014.04.036
  68. M.H. Hussin, M.J. Kassim, Mater. Chem. Phys. 125 (2011) 461. https://doi.org/10.1016/j.matchemphys.2010.10.032
  69. N.S. Yin, S. Abdullah, C.K. Phin, Int. J. Pharm. Pharm. Sci. 5 (2013) 137.
  70. L.L. Liao, S. Mo, J.L. Lei, H.Q. Luo, N.B. Li, J. Colloid Interface Sci. 474 (2016) 68. https://doi.org/10.1016/j.jcis.2016.04.015
  71. E. Ituen, O. Akaranta, A. James, S. Sun, Sustain. Mater. Technol. 11 (2017) 12.
  72. M.V. Fiori-Bimbi, P.E. Alvarez, H. Vaca, C.A. Gervasi, Corros. Sci. 92 (2015) 192. https://doi.org/10.1016/j.corsci.2014.12.002
  73. N.A. Odewunmi, S.A. Umoren, Z.M. Gasem, J. Ind. Eng. Chem. 21 (2015) 239. https://doi.org/10.1016/j.jiec.2014.02.030
  74. K.K. Alaneme, S.J. Olusegun, O.T. Adelowo, Alexandria Eng. J. 55 (2016) 673. https://doi.org/10.1016/j.aej.2015.10.009
  75. A. Shah, A. Rahim, S. Hamid, S. Yahya, Int. J. Electrochem. Sci. 8 (2013) 2140.
  76. M.A. Abu-Dalo, N.A. Al-Rawashdeh, A.A. Mutlaq, J. Iron Steel Res. Int. 23 (2016) 722. https://doi.org/10.1016/S1006-706X(16)30112-1
  77. N. Odewunmi, S. Umoren, Z. Gasem, J. Ind. Eng. Chem. 21 (2015) 239. https://doi.org/10.1016/j.jiec.2014.02.030
  78. E. Kowsari, M. Payami, R. Amini, B. Ramezanzadeh, M. Javanbakht, Appl. Surf. Sci. 289 (2014) 478. https://doi.org/10.1016/j.apsusc.2013.11.017
  79. A.Y. El-Etre, A.I. Ali, Chin. J. Chem. Eng. 25 (2017) 373. https://doi.org/10.1016/j.cjche.2016.08.017
  80. F.S. de Souza, A. Spinelli, Corros. Sci. 51 (2009) 642. https://doi.org/10.1016/j.corsci.2008.12.013
  81. M.A. Quraishi, A. Singh, V.K. Singh, D.K. Yadav, A.K. Singh, Mater. Chem. Phys. 122 (2010) 114. https://doi.org/10.1016/j.matchemphys.2010.02.066
  82. M.E. Jancy, L. Inbathamizh, Asian J. Pharm. Clin. Res. 5 (2012) 159.
  83. A. Annamalai, V. Christina, D. Sudha, M. Kalpana, P. Lakshmi, Colloids Surf. B: Biointerfaces 108 (2013) 60. https://doi.org/10.1016/j.colsurfb.2013.02.012
  84. A. Dasari, V. Guttena, J. Photochem. Photobiol. B: Biol. 157 (2016) 57. https://doi.org/10.1016/j.jphotobiol.2016.02.002

Cited by

  1. Rheological, electrochemical, surface, DFT and molecular dynamics simulation studies on the anticorrosive properties of new epoxy monomer compound for steel in 1 M HCl solution vol.9, pp.8, 2018, https://doi.org/10.1039/c8ra09446b
  2. Oil palm empty fruit bunch extract as green corrosion inhibitor for mild steel in hydrochloric acid solution: Central composite design optimization vol.70, pp.6, 2019, https://doi.org/10.1002/maco.201810653
  3. 1-(2-Aminoethyl)-1-dodecyl-2-undecyl-4,5-dihydro-1H-imidazol-1-ium chloride, 1-(2-Aminoethyl)-1-dodecyl-2-tridecyl-4,5-dihydro-1H-imidazol-1-ium chloride as Corrosion Inhibitors for Carbon Steel in Oi vol.233, pp.11, 2019, https://doi.org/10.1515/zpch-2018-1207
  4. Comparative Study on the Corrosion Inhibitive Effect of 2-Mecraptobenzothiazole and Na2HPO4 on Industrial Conveying API 5L X42 Pipeline Steel vol.10, pp.1, 2018, https://doi.org/10.3390/app10010290
  5. Effects of ceramic tile powder waste on properties of self-compacted alkali-activated concrete vol.236, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2019.117574
  6. The Inhibitor Effect of (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc(II) Chloride, an Industrial Cationic Azo Dye, onto Reducing Acidic Corrosion Rate of Mi vol.11, pp.3, 2018, https://doi.org/10.33961/jecst.2019.00703
  7. A novel use of solid waste extract from tea factory as corrosion inhibitor in acidic media on boiler quality steel vol.151, pp.None, 2018, https://doi.org/10.1016/j.indcrop.2020.112468
  8. Synthesis of bio-based nickel nanoparticles composite, characterization and corrosion in hibition in simulated oilfield microbial and acidizing environments vol.35, pp.1, 2018, https://doi.org/10.1080/01694243.2020.1785992
  9. Proanthocyanidins with Corrosion Inhibition Activity for AISI 1020 Carbon Steel under Neutral pH Conditions of Coconut (Cocos nucifera L.) Husk Fibers vol.6, pp.10, 2018, https://doi.org/10.1021/acsomega.0c06104
  10. Assessment of the Suitability of Ceramic Waste in Geopolymer Composites: An Appraisal vol.14, pp.12, 2018, https://doi.org/10.3390/ma14123279
  11. Effect of Quarry Rock Dust as a Binder on the Properties of Fly Ash and Slag-Based Geopolymer Concrete Exposed to Ambient and Elevated Temperatures vol.11, pp.19, 2021, https://doi.org/10.3390/app11199192
  12. Application of a Mix of Vegetables Residues as Inhibitor for Carbon Steel vol.25, pp.None, 2018, https://doi.org/10.1590/1980-5373-mr-2020-0440
  13. Application of a Mix of Vegetables Residues as Inhibitor for Carbon Steel vol.25, pp.None, 2018, https://doi.org/10.1590/1980-5373-mr-2020-0440