Analysis of the Relationship between Regional Prevalence and the Average Concentration of Particulate Matter using Beta Regression

베타회귀를 사용한 지역별 유병률과 미세먼지 연평균 농도의 관계 분석

  • 조은영 (고려대학교 의과대학 의학통계학교실) ;
  • 안형진 (고려대학교 의과대학 의학통계학교실)
  • Received : 2018.07.19
  • Accepted : 2018.08.19
  • Published : 2018.08.31

Abstract

Although prevalence is a commonly used value in epidemiology, it is not modeled practically. Generally, epidemiologist modeled using logistic regression or Poisson regression, with related values of prevalence. In this paper, the prevalence was analyzed with a beta regression using the characteristics of prevalence with continuous values between 0 and 1. Using community health survey data and particulate matter data from the National Institute of Environmental Research, the prevalence of asthma, diabetes, hypertension, atopic dermatitis or dyslipidemia and the concentration of particulate matter, PM10 and PM2.5 were estimated in 2015. The analysis showed that there were some differences between PM10 and PM2.5, but there were the significant associations with the prevalence of asthma, diabetes, hypertension, atopic dermatitis or dyslipidemia. This is no different from the recent research on the particulate matter and diseases and we can see that the regional level of particulate matter needs to be controlled to prevent the disease.

특정 시점, 특정 지역에서 질병에 걸린 사람들의 비율을 나타내는 유병률은 역학에서 많이 사용되는 값이다. 그럼에도 불구하고 유병률 자체를 모형화하는 경우는 많지 않다. 일반적으로 유병 유무 등의 연관 변수를 사용하여 이분형 변수 분석에 사용하는 카이제곱 검정을 통한 통계적 검정을 수행하거나, 이분형 혹은 가산형 변수 분석에 사용하는 로지스틱 회귀분석이나 포아송 회귀분석 등으로 모형화한다. 본 논문에서는 0과 1사이의 연속적인 값을 갖고 있는 연속형 변수인 유병률의 특성을 이용하여 유병률에 베타 회귀 분석 방법을 적용하여 분석하였다. 질병관리본부의 지역사회 건강조사 데이터와 국립환경과학원의 미세먼지 농도 데이터를 이용하여 2015년 천식, 당뇨, 고혈압, 아토피, 이상지질혈증의 유병률과 PM10과 PM2.5의 미세먼지가 기준치 이상으로 측정된 일수의 관계를 베타회귀분석을 이용하여 분석하였다. 분석 결과 각 질병마다 차이는 조금씩 있었지만 각 질병의 유병률이 적어도 PM10과 PM2.5 중 하나와는 유의한 관계가 있었다. 이는 최근 들어 많이 진행되고 있는 미세먼지와 질병에 관한 연구 결과와 유사하였고, 질병 예방을 위해 지역 단위의 미세먼지에 대한 대책 마련이 필요함을 알 수 있다.

Keywords

References

  1. Baldacci, S., Maio, S., Cerrai, S., Sarno, G., Baiz, N., Simoni, M., Annesi-Maesano, I., Viegi, G. (2015). Allergy and asthma : effects of the exposure to particulate matter and biological allergens, Respiratory Medicine, 109(9), 1089-1104. https://doi.org/10.1016/j.rmed.2015.05.017
  2. Chang, M., Choi, K. (2009). Mortality for PM10 in Seoul by using nonlinear regression model, Journal of the Korean Data Analysis Society, 11(5), 2425-2436. (in Korean).
  3. Ferrari, S. L. P., Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions, Journal of Applied Statistics, 31(7), 799-815. https://doi.org/10.1080/0266476042000214501
  4. Health Effects Institute (2018). State of Global Air 2018, Data source: Global Burden of Disease Study 2016 IHME, https://www.stateofglobalair.org, 2018/07/15.
  5. Hernandez, A. M., Gimeno Ruiz de Porras, D., Marko, D., Whitworth, K. W. (2018). The association between PM2.5 and ozone and the prevalence of diabetes mellitus in the United States, 2002 to 2008, Journal of Occupational and Environmental Medicine, 60(7), 594-602. https://doi.org/10.1097/JOM.0000000000001332
  6. Honda, T., Pun, V. C., Manjourides, J., Suh, H. (2018). Association of long-term fine particulate matter exposure with prevalent hypertension and increased blood pressure in older Americans, Environmental Research, 164, 1-8. https://doi.org/10.1016/j.envres.2018.02.008
  7. Janghorbani, M., Momeni, F., Mansourian, M. (2014). Systematic review and meta-analysis of air pollution exposure and risk of diabetes, European Journal of Epidemiology, 29(4), 231-242. https://doi.org/10.1007/s10654-014-9907-2
  8. Kim, E. (2018). Factors affecting the occurrence of chronic kidney disease in adults: secondary analysis using data from the 7th Korea national health and nutrition examination survey (KNHANES, 2016), Journal of the Korean Data Analysis Society, 20(2), 1037-1050. (in Korean).
  9. Kim, J. H., Oh, S. K., Seong, H. U., Lim, D. H., Son, B. K., Kim, H. C., Lee, J. Y., Leem, J. H. (2010). Relationship between air pollutants and prevalence of allergic disease/pulmonary function in students in Incheon, The Korean Academy of Pediatric Allergy and Respiratory Disease, 20(4), 264-276. (in Korean).
  10. Kim, J. H., Tak, Y. (2018). Factors influencing suicidal ideation in the elderly: using 2015 Korea welfare panel study, Journal of the Korean Data Analysis Society, 20(2), 1051-1062. (in Korean).
  11. Korea Centers for Disease Control and Prevention (2015). Community Health Survey.
  12. National Institute of Environmental Research (2016). Annual Report of Air Quality in Korea 2015. (in Korean).
  13. National Institute of Environmental Research (2017). Annual Report of Air Quality in Korea 2016. (in Korean).
  14. Park, H., Lee, J. (2009). Effects of environmental factors on monthly cerebrovascular mortality in Seoul, Journal of the Korean Data Analysis Society, 11(2), 687-698.
  15. Shah, A. S., Langrish, J. P., Nair, H., McAllister, D. A., Hunter, A. L., Donaldson, K., Newby, D. E., Mills, N. L. (2013). Global association of air pollution and heart failure: a systematic review and meta-analysis, The Lancet, 382(9897), 1039-1048. https://doi.org/10.1016/S0140-6736(13)60898-3
  16. Wang, M., Zheng, S., Nie, Y., Weng, J., Cheng, N., Hu, X., Ren, X., Pei, H., Bai, Y. (2018). Association between short-term exposure to air pollution and dyslipidemias among type 2 diabetic patients in Northwest China: a population-based study, International Journal of Environmental Research and Public Health, 15(4), 631. https://doi.org/10.3390/ijerph15040631
  17. World Health Organization (2006). Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide.