DOI QR코드

DOI QR Code

Roles of the Hsp90-Calcineurin Pathway in the Antifungal Activity of Honokiol

  • Liao, Kai (Department of Pathology and Pathophysiology, Medical School of Southeast University) ;
  • Sun, Lingmei (Department of Pharmacology, Medical School of Southeast University)
  • Received : 2018.01.19
  • Accepted : 2018.04.30
  • Published : 2018.07.28

Abstract

Honokiol, a bioactive compound isolated from the cone and bark of Magnolia officinalis, has been shown to have various activities including inhibition of the growth of Candida albicans. We investigated the roles of the Hsp90-calcineurin pathway in the antifungal activity of honokiol. The pharmacologic tool was employed to evaluate the effects of Hsp90 and calcineurin in the antifungal activity of honokiol. We also evaluated the protective effects of the calcineurin inhibitor cyclosporin A (CsA) on honokiol-induced mitochondrial dysfunction by the fluorescence staining method. The Hsp90 inhibitor potentiated the antifungal activity of honokiol. A C. albicans strain with the calcineurin gene deleted displayed enhanced sensitivity to honokiol. However, co-treatment with calcineurin inhibitor CsA attenuated the cytotoxic activity of honokiol due to the protective effect on mitochondria. Our results provide insight into the action mechanism of honokiol.

Keywords

References

  1. Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE. 2009. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 5: e1000532. https://doi.org/10.1371/journal.ppat.1000532
  2. O'Meara TR, Veri AO, Polvi EJ, Li X, Valaei SF, Diezmann S, et al. 2016. Mapping the Hsp90 genetic network reveals ergosterol biosynthesis and phosphatidylinositol-4-kinase signaling as core circuitry governing cellular stress. PLoS Genet. 12: e1006142. https://doi.org/10.1371/journal.pgen.1006142
  3. Shapiro RS, Robbins N, Cowen LE. 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75: 213-267. https://doi.org/10.1128/MMBR.00045-10
  4. Cruz MC, Goldstein AL, Blankenship JR, Del PM, Davis D, Cardenas ME, et al. 2002. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 21: 546-559. https://doi.org/10.1093/emboj/21.4.546
  5. Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, et al. 2003. Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot. Cell 2: 422-430. https://doi.org/10.1128/EC.2.3.422-430.2003
  6. Uppuluri P, Nett J, Heitman J, Andes D. 2008. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob. Agents Chemother. 52: 1127-1132. https://doi.org/10.1128/AAC.01397-07
  7. Cordeiro RA, Macedo RB, Teixeira CE, Marques FJ, Bandeira TJ, Moreira JL, et al. 2014. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. J. Med. Microbiol. 63: 936-944. https://doi.org/10.1099/jmm.0.073478-0
  8. Yu SJ, Chang YL, Chen YL. 2015. Calcineurin signaling: lessons from Candida species. FEMS Yeast Res. 15: v16.
  9. Fried LE, Arbiser JL. 2009. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid. Redox Signal. 11: 1139-1148. https://doi.org/10.1089/ars.2009.2440
  10. Sun L, Liao K, Hang C, Wang D. 2017. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12: e172228.
  11. Sun L, Liao K, Wang D. 2017. Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12: e184003.
  12. Clinical and Laboratory Standards Institute (CLSI). 2008. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard, M27-A3, 3rd Ed. Clinical and Laboratory Standards Institute, Wayne, PA.
  13. Sun L, Hang C, Liao K. 2018. Synergistic effect of caffeic acid phenethyl ester with caspofungin against Candida albicans is mediated by disrupting iron homeostasis. Food Chem. Toxicol. 116: 51-58. https://doi.org/10.1016/j.fct.2018.04.014
  14. Sun LM, Liao K. 2018. Saccharomyces cerevisiae Hog1 MAP kinase pathway is activated in response to honokiol exposure. J. Appl. Microbiol. 124: 754-763. https://doi.org/10.1111/jam.13649
  15. Wu XZ, Chang WQ, Cheng AX, Sun LM, Lou HX. 2010. Plagiochin E, an antifungal active macrocyclic bis(bibenzyl), induced apoptosis in Candida albicans through a metacaspasedependent apoptotic pathway. Biochim. Biophys. Acta 1800: 439-447. https://doi.org/10.1016/j.bbagen.2010.01.001
  16. Marchetti O, Moreillon P, Entenza JM, Vouillamoz J, Glauser MP, Bille J, et al. 2003. Fungicidal synergism of fluconazole and cyclosporine in Candida albicans is not dependent on multidrug efflux transporters encoded by the CDR1, CDR2, CaMDR1, and FLU1 genes. Antimicrob. Agents Chemother. 47: 1565-1570. https://doi.org/10.1128/AAC.47.5.1565-1570.2003
  17. van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP. 1996. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24: 131-139. https://doi.org/10.1002/(SICI)1097-0320(19960601)24:2<131::AID-CYTO5>3.0.CO;2-M
  18. Broekemeier KM, Dempsey ME, Pfeiffer DR. 1989. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J. Biol. Chem. 264: 7826-7830.
  19. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. 1996. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J. Biol. Chem. 271: 2185-2192. https://doi.org/10.1074/jbc.271.4.2185
  20. Zhao Y, Wang ZB, Xu JX. 2003. Effect of cytochrome c on the generation and elimination of $O_{2}{^{{\cdot}{-}}}\;and\;H_2O_2$ in mitochondria. J. Biol. Chem. 278: 2356-2360. https://doi.org/10.1074/jbc.M209681200
  21. Waterhouse NJ, Trapani JA. 2003. A new quantitative assay for cytochrome c release in apoptotic cells. Cell Death Differ. 10: 853-855. https://doi.org/10.1038/sj.cdd.4401263
  22. Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, Schell WA, et al. 2009. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc. Natl. Acad. Sci. USA 106: 2818-2823. https://doi.org/10.1073/pnas.0813394106
  23. Koehn FE, Carter GT. 2005. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4: 206-220. https://doi.org/10.1038/nrd1657
  24. Woodbury A, Yu SP, Wei L, Garcia P. 2013. Neuromodulating effects of honokiol: a review. Front. Neurol. 4: 130.
  25. Pan J, Lee Y, Wang Y, You M. 2016. Honokiol targets mitochondria to halt cancer progression and metastasis. Mol. Nutr. Food Res. 60: 1383-1395. https://doi.org/10.1002/mnfr.201501007
  26. Juvvadi PR, Lamoth F, Steinbach WJ. 2014. Calcineurin as a multifunctional regulator: unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol. Rev. 28: 56-69. https://doi.org/10.1016/j.fbr.2014.02.004
  27. Palacin M, Coto E, Llobet L, Pacheu-Grau D, Montoya J, Ruiz-Pesini E. 2013. FK506 affects mitochondrial protein synthesis and oxygen consumption in human cells. Cell Biol. Toxicol. 29: 407-414. https://doi.org/10.1007/s10565-013-9263-0
  28. Almeida S, Domingues A, Rodrigues L, Oliveira CR, Rego AC. 2004. FK506 prevents mitochondrial-dependent apoptotic cell death induced by 3-nitropropionic acid in rat primary cortical cultures. Neurobiol. Dis. 17: 435-444. https://doi.org/10.1016/j.nbd.2004.07.002

Cited by

  1. The Effect of Honokiol on Ergosterol Biosynthesis and Vacuole Function in Candida albicans vol.30, pp.12, 2018, https://doi.org/10.4014/jmb.2008.08019