DOI QR코드

DOI QR Code

Experimental analysis of the sedimentation processes in the movable weir by changing the channel slope considering weir operation

가동보 운영 및 하상경사 변화에 의한 보 상류 퇴사과정의 실험적 분석

  • Lee, Kyung Su (National Disaster Management Institute, Ministry of the Interior and Safety) ;
  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation)
  • 이경수 (행정안전부 국립재난안전연구원) ;
  • 장창래 (한국교통대학교 토목공학과)
  • Received : 2018.06.06
  • Accepted : 2018.06.28
  • Published : 2018.08.31

Abstract

This study investigates the sediment processes the Improved-pneumatic-movable weir through laboratory experiments considering changing channel slopes. Experimental results show that the delta migrates towards the weir and the delta height increases as time passes. Moreover, as the delta approaches the weir, the delta migration speed decreases. As the dimensionless delta location increases, the effective height of dimensionless delta and the dimensionless reservoir capacity increases. Therefore, under the same slope conditions, the sediment deposition volume of the delta is small as the channel slope is mild. This means that the channel slope affects the development of the delta in the upstream of the Improved-pneumatic-movable weir. At the beginning of the experiment, the foreset slope is mild. However, the foreset slope of the delta increases with water depth as the delta migrates downstream. Moreover, as the slope is mild, the ratio of delta front length to delta height is close to 1, and the dimensionless delta height and the dimensionless delta migration speed decrease. As the delta height increases, the water depth, the velocity approaching to the weir and the delta migration speed decrease.

본 연구에서는 실내실험을 통하여 개량형 공압식 가동보를 대상으로 수로경사 변화를 고려한 유사의 수리학적 발달 과정을 분석하였다. 분석결과 보에 의하여 형성된 델타는 시간이 증가함에 따라 하류로 이동하며, 델타높이($h_d$)는 증가하였다. 또한 보에 도달 할수록 흐름이 약해지면서 델타의 이동속도($S_D$)는 감소하였다. 무차원 델타 위치($x_D/x$)가 증가할수록 무차원 델타의 유효높이($h_d/h_w$)와 무차원 저수지 용량($V_{xD}/V_x$)이 증가였다. 따라서 동일한 조건에서 수로경사(i)가 완만할수록 델타의 퇴적량($Q_s$)이 감소하게 되며, 델타의 체적($V_{xD}$) 발달에 큰 영향을 미치는 것으로 나타났다. 통수 초기 델타의 전면경사가 완만하며, 델타가 하류로 이동할수록 델타의 전면경사는 증가하였다. 또한 수로경사(i)가 완만할수록 델타의 전면부 길이 비($h_d/{\Delta}S$)는 1에 가까워지고, 무차원 델타의 높이($h_d/h$)와 무차원 델타의 이동속도($S_D/V_0$)가 감소하였다. 델타의 높이($h_d$)가 증가할수록 수심(h)은 감소하였으며, 보에 접근하는 유속($V_0$)과 델타의 이동속도($S_D$)도 감소하였다.

Keywords

References

  1. Ashida, K., Sawai, K., and Shieh, C. L. (1987). "A study on the delta formation process in a laterally wide basin-laboratory study of delta formation caused by bed load." Annals of Disaster Prevention Research Institute, Vol. 30, B-2, pp. 475-491.
  2. Ashida, K., Sawai, K., and Shieh, C. L. (1988). "A study on the delta formation process in a laterally wide basin-laboratory study of the influence on the delta formation process associated with suspended load and longshore current." Annals of Disaster Prevention Research Institute, Vol. 31, B-2, pp. 477-487.
  3. Ashida, K., Sawai, K., and Shieh, C. L. (1989). "A study on the delta formation process in a laterally wide basin-simulation of the development of delta with/without channels on its plain." Annals of Disaster Prevention Research Institute, Vol. 32, B-2, pp. 553-570.
  4. Chang, H. H. (1982). "Fluvial hydraulics of deltas and alluvial fans." Journal of the Hydraulics Division, ASCE, Vol. 108, No. 11, pp. 1282-1295.
  5. Hotchkiss, R. (1990). Reservoir sedimentation and sluicing: experimental and numerical analysis. University of Minnesota, Project Report, No. 304.
  6. Hotchkiss, R. H., and Parker, G. (1991). "Shock fitting of aggradational profiles due to backwater." Journal of Hydraulic Engineering, ASCE, Vol. 117, No. 9, pp. 1129-1144. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:9(1129)
  7. Julien, P. Y. (1995). Erosion and sedimentation. Cambridge University Press, NY, USA.
  8. Kim, D. G., and Shin, K. G. (2013). "Long-term simulation of reservoir sedimentation considering particle-size distributions of suspended sediment and bed materials." Journal of Korea Water Resource Association, No. 46, No. 1, pp. 87-97. https://doi.org/10.3741/JKWRA.2013.46.1.87
  9. Lee, K. S. (2018). "Development of discharge coefficient of movable weir and analysis of the sediment processes upstream from the weir." Ph.D. dissertation, Korea National University of Transportation, pp. 64-68.
  10. Lee, K. S., and Jang, C.-L. (2018). "Analysis of the sediment processes of the movable weir through the laboratory experiments: focusing on the change of standing angle of weir." Journal of Korea Water Resource Association. Vol. 51, No. 9 (Accepted : 30 July 2018).
  11. Lee, K. S., Jang, C.-L., Son, K. I., and Hwang, M. H. (2013). "Numerical analysis of the sediment pass-through from the Sangju weir and the Gumi weir by using CCHE2D." Journal of Korean Society on Water Environment, No. 29, No. 6, pp. 813-824.
  12. Mahmood, K. (1987). Reservoir sedimentation: impact, extent and mitigation. Technical Paper No. 71, The World Bank, Washington D.C.
  13. Morris, G. L., and Fan, J. (1997), Reservoir Sedimentation Handbook. McGraw-Hill, NY, pp. 10.1-10.5.
  14. Soni, J. P., Ranga Raju, K. G., and Garde, R. J. (1980). "Aggradation in streams due to overloading." Journal of the Hydraulics Division, Vol. 106, No. 1, pp. 117-132.
  15. Toniolo, H., and Parker, G. (2003). "1D numerical modeling of reservoir sedimentation." Proceedings IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Barcelona, Spain, pp. 457-468.
  16. Wright, L. D., and Coleman, J. M. (1974). "Mississippi river mouth processes: Effluent dynamics and morphologic development." The Journal of Geology, Vol. 82, No. 6, pp. 751-778. https://doi.org/10.1086/628028
  17. Yang, C. T., and Ahn, J. (2009). Xiaolangdi reservoir scouring and silting mechanism and numerical simulation study. Yellow River Engineering Consulting Company, China.