DOI QR코드

DOI QR Code

Relative RPCs Bias-compensation for Satellite Stereo Images Processing

고해상도 입체 위성영상 처리를 위한 무기준점 기반 상호표정

  • Oh, Jae Hong (Dept. of Civil Engineering, Korea Maritime and Ocean University) ;
  • Lee, Chang No (Dept. of Civil Engineering, Seoul National University of Science and Technology)
  • Received : 2018.07.13
  • Accepted : 2018.08.27
  • Published : 2018.08.31

Abstract

It is prerequisite to generate epipolar resampled images by reducing the y-parallax for accurate and efficient processing of satellite stereo images. Minimizing y-parallax requires the accurate sensor modeling that is carried out with ground control points. However, the approach is not feasible over inaccessible areas where control points cannot be easily acquired. For the case, a relative orientation can be utilized only with conjugate points, but its accuracy for satellite sensor should be studied because the sensor has different geometry compared to well-known frame type cameras. Therefore, we carried out the bias-compensation of RPCs (Rational Polynomial Coefficients) without any ground control points to study its precision and effects on the y-parallax in epipolar resampled images. The conjugate points were generated with stereo image matching with outlier removals. RPCs compensation was performed based on the affine and polynomial models. We analyzed the reprojection error of the compensated RPCs and the y-parallax in the resampled images. Experimental result showed one-pixel level of y-parallax for Kompsat-3 stereo data.

고해상도 입체 위성영상을 보다 정확하고 효율적으로 처리하기 위해서는 종시차를 제거한 정밀한 에피폴라 영상을 생성하는 것이 필요하다. 종시차 제거를 위해서는 두 입체 영상간의 정밀한 센서모델링이 선행되어야하는데, 이를 위해 일반적으로 지상 기준점을 이용한 번들 조정을 수행한다. 그러나 접근이 힘들거나, 참조 데이터를 확보하기 어려운 지역, 또는 절대적 위치 정확성이 크게 중요치 않은 경우에는 기준점을 활용하지 않고, 공액점(conjugate points)만을 활용한 상호표정을 수행하여야 한다. 항공, 지상 사진 등에 사용되는 프레임 카메라와는 달리, 위성 센서에 활용되는 푸쉬부룸 센서의 경우 상호 표정의 정확성 등의 분석의 검증이 필요하므로, 본 연구에서는 고해상도 입체 영상 처리를 위해 가장 많이 활용하는 RPCs의 무기준점 편위 보정을 통하여 상호표정의 정밀성을 분석하고 입체 영상 생성 시 종시차 달성의 정확성을 분석하였다. 연구 과정에서 공액점은 영상간의 매칭을 통해 생성하였고, 공액점의 오차를 고려하여 과대오차 제거 기법을 적용하여 필터링하였다. RPCs 편위보정은 affine과 다항식 기반으로 진행되었으며, 보정 후 RPCs의 투영 오차를 검토하였다. 최종적으로 에피폴라 영상을 생성하여 종시차를 평가하였으며, 그 결과 아리랑 3호 영상의 경우 2차 다항식으로 1픽셀 수준의 종시차를 달성할 수 있음을 알 수 있었다.

Keywords

References

  1. De Franchis, C., Meinhardt-Llopis, E., Michel, J., Morel, J.M., and Facciolo, G. (2014), An automatic and modular stereo pipeline for pushbroom images, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5-7 Sep 2014, Zurich, Switzrland, pp. 49-56.
  2. Fraser, C.S. and Hanley, H.B. (2005), Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery, Photogrammetric Engineering & Remote Sensing, Vol. 71, No. 8, pp. 909-915. https://doi.org/10.14358/PERS.71.8.909
  3. Fraser, C.S. and Ravanbakhsh, M. (2009), Georeferencing accuracy of GeoEye-1 imagery, Photogrammetric Engineering & Remote Sensing, Vol. 75, No. 6, pp. 634-638.
  4. Ghuffar, S. (2016), Satellite stereo based digital surface model generation using semi global matching in object and image space, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 12-19 July 2016, Prague, Czech Republic, pp. 63-68.
  5. Gong, K. and Fritsch, D. (2017), Relative orientation and modified piecewise epipolar resampling for high resolution satellite images, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 6-9 June 2017, Hannover, Germany, pp. 579-586.
  6. Lehmann, R. (2013), 3sigma-rule for outlier detection from the viewpoint of geodetic adjustment, Journal of Surveying Engineering, Vol. 139, No. 4, pp. 157-165. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000112
  7. Oh, J.H. and Lee, C.N. (2015), Automated bias-compensation of rational polynomial coefficients of high resolution satellite imagery based on topographic maps, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 100, pp. 14-22. https://doi.org/10.1016/j.isprsjprs.2014.02.009
  8. Oh, J.H., Lee, W.H., Toth, C.K., Grejner-Brzezinska, D.A., and Lee, C.H. (2010), A piecewise approach to epipolar resampling of pushbroom satellite images based on RPC, Photogrammetric Engineering & Remote Sensing, Vol. 76, No. 12, pp. 1353-1363. https://doi.org/10.14358/PERS.76.12.1353
  9. Song, J.H. and Oh, J.H. (2014), Epipolar resampling from Kompsat-2 and Kompsat-3, Journal of the Korean Association of Geographic Information Studies, Vol. 17, No. 4, pp. 156-166. (in Korean with English abstract) https://doi.org/10.11108/kagis.2014.17.4.156
  10. Tao, C. and Yong, H. (2001), A comprehensive study of the rational function model for photogrammetric processing, Photogrammetric Engineering & Remote Sensing, Vol. 67, No. 12, pp. 1347-1357.
  11. Wang, M., Hu, F., and Li, J. (2011), Epipolar resampling of linear pushbroom satellite imagery by a new epipolarity model, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 66, No. 3, pp. 347-355. https://doi.org/10.1016/j.isprsjprs.2011.01.002

Cited by

  1. 해외 테스트베드 지역 아리랑 위성 3호 DSM 성능평가 vol.36, pp.6, 2018, https://doi.org/10.7780/kjrs.2020.36.6.2.11